Skip to main content
Log in

Rhythmic arm movements are less affected than discrete ones after a stroke

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Recent reports indicate that rhythmic and discrete upper-limb movements are two different motor primitives which recruit, at least partially, distinct neural circuitries. In particular, rhythmic movements recruit a smaller cortical network than discrete movements. The goal of this paper is to compare the levels of disability in performing rhythmic and discrete movements after a stroke. More precisely, we tested the hypothesis that rhythmic movements should be less affected than discrete ones, because they recruit neural circuitries that are less likely to be damaged by the stroke. Eleven stroke patients and eleven age-matched control subjects performed discrete and rhythmic movements using an end-effector robot (REAplan). The rhythmic movement condition was performed with and without visual targets to further decrease cortical recruitment. Movement kinematics was analyzed through specific metrics, capturing the degree of smoothness and harmonicity. We reported three main observations: (1) the movement smoothness of the paretic arm was more severely degraded for discrete movements than rhythmic movements; (2) most of the patients performed rhythmic movements with a lower harmonicity than controls; and (3) visually guided rhythmic movements were more altered than non-visually guided rhythmic movements. These results suggest a hierarchy in the levels of impairment: Discrete movements are more affected than rhythmic ones, which are more affected if they are visually guided. These results are a new illustration that discrete and rhythmic movements are two fundamental primitives in upper-limb movements. Moreover, this hierarchy of impairment opens new post-stroke rehabilitation perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen RA, Cui H (2009) Intention, action planning, and decision making in parietal–frontal circuits. Neuron 63:568–583

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian S, Melendez-Calderon A, Burdet E (2012) A robust and sensitive metric for quantifying movement smoothness. IEEE Trans Biomed Eng 59:2126–2136

    Article  CAS  PubMed  Google Scholar 

  • Barbeau H, Visintin M (2003) Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil 84:1458–1465

    Article  PubMed  Google Scholar 

  • Brown TG (1914) On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 48:18–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan JJ, Park J-H, Shea CH (2006) Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action. Exp Brain Res 175:710–725

    Article  PubMed  Google Scholar 

  • Cirstea M, Levin MF (2000) Compensatory strategies for reaching in stroke. Brain 123:940–953

    Article  PubMed  Google Scholar 

  • Cohen AH, Rossignol S, Grillner S (1988) Neural control of rhythmic movements in vertebrates. Wiley, New York

    Google Scholar 

  • Collins JJ, Richmond S (1994) Hard-wired central pattern generators for quadrupedal locomotion. Biol Cybern 71:375–385

    Article  Google Scholar 

  • Dagnelie P (2013) Statistique théorique et appliquée, 1st edn. De Boeck, Bruxelles

    Google Scholar 

  • De Rugy A, Sternad D (2003) Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation during oscillatory movements. Brain Res 994:160–174

    Article  PubMed  Google Scholar 

  • Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 2:563–567

    Article  CAS  PubMed  Google Scholar 

  • Desmurget M, Gréa H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21:2919–2928

    CAS  PubMed  Google Scholar 

  • Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3:781–790

    Article  CAS  PubMed  Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humansa. Ann N Y Acad Sci 860:360–376

    Article  CAS  PubMed  Google Scholar 

  • Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Hogan N (2009) Submovement changes characterize generalization of motor recovery after stroke. Cortex 45:318–324

    Article  PubMed  Google Scholar 

  • Diserens K, Perret N, Chatelain S, Bashir S, Ruegg D, Vuadens P, Vingerhoets F (2007) The effect of repetitive arm cycling on post stroke spasticity and motor control: repetitive arm cycling and spasticity. J Neurol Sci 253:18–24

    Article  CAS  PubMed  Google Scholar 

  • Duysens J, Van de Crommert HW (1998) Neural control of locomotion; Part 1: the central pattern generator from cats to humans. Gait Posture 7:131–141

    Article  PubMed  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47(6):381

    Article  CAS  PubMed  Google Scholar 

  • Fugl-Meyer A, Jääskö L, Leyman I, Olsson S, Steglind S (1974) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7:13–31

    Google Scholar 

  • Gilliaux M, Lejeune T, Detrembleur C, Sapin J, Dehez B, Stoquart G (2012) A robotic device as a sensitive quantitative tool to assess upper limb impairments in stroke patients: a preliminary prospective cohort study. J Rehabil Med 44:210–217

    Article  PubMed  Google Scholar 

  • Gilliaux M, Lejeune TM, Detrembleur C, Sapin J, Dehez B, Selves C, Stoquart G (2014a) Using the robotic device REAplan as a valid, reliable, and sensitive tool to quantify upper limb impairments in stroke patients. J Rehabil Med 46:00–00

    Article  Google Scholar 

  • Gilliaux M, Renders A, Dispa D, Holvoet D, Sapin J, Dehez B, Detrembleur C, Lejeune TM, Stoquart G (2014b) Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial. Neurorehabil Neural Repair. doi:10.1177/1545968314541172

    PubMed  Google Scholar 

  • Giszter SF (2015) Motor primitives—new data and future questions. Curr Opin Neurobiol 33:156–165

    Article  CAS  PubMed  Google Scholar 

  • Glover S, Wall MB, Smith AT (2012) Distinct cortical networks support the planning and online control of reaching-to-grasp in humans: cortical planning and control. Eur J Neurosci 35:909–915

    Article  PubMed  Google Scholar 

  • Goto Y, Jono Y, Hatanaka R, Nomura Y, Tani K, Chujo Y, Hiraoka K (2014) Different corticospinal control between discrete and rhythmic movement of the ankle. Front Hum Neurosci 8:578. doi:10.3389/fnhum.2014.00578

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowland C, Basmajian JV, Plews N, Burcea I et al (1992) Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke. Phys Ther 72:624–633

    CAS  PubMed  Google Scholar 

  • Guiard Y (1993) On Fitts’s and Hooke’s laws: simple harmonic movement in upper-limb cyclical aiming. Acta Psychol (Amst) 82:139–159

    Article  CAS  Google Scholar 

  • Haiss F, Schwarz C (2005) Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex. J Neurosci 25:1579–1587

    Article  CAS  PubMed  Google Scholar 

  • Hanakawa T, Dimyan MA, Hallett M (2008) Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex 18:2775–2788

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogan N, Sternad D (2007) On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp Brain Res 181:13–30

    Article  PubMed  Google Scholar 

  • Hogan N, Sternad D (2009) Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J Mot Behav 41:529–534

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogan N, Sternad D (2012) Dynamic primitives of motor behavior. Biol Cybern 106:727–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogan N, Sternad D (2013) Dynamic primitives in the control of locomotion. Front Comput Neurosci 7:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard IS, Ingram JN, Wolpert DM (2011) Separate representations of dynamics in rhythmic and discrete movements: evidence from motor learning. J Neurophysiol 105:1722–1731

    Article  PubMed  PubMed Central  Google Scholar 

  • Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21:642–653

    Article  PubMed  Google Scholar 

  • Ikegami T, Hirashima M, Taga G, Nozaki D (2010) Asymmetric transfer of visuomotor learning between discrete and rhythmic movements. J Neurosci 30:4515–4521

    Article  CAS  PubMed  Google Scholar 

  • Kamper DG, McKenna-Cole AN, Kahn LE, Reinkensmeyer DJ (2002) Alterations in reaching after stroke and their relation to movement direction and impairment severity. Arch Phys Med Rehabil 83:702–707

    Article  PubMed  Google Scholar 

  • Kawashima N, Nozaki D, Abe MO, Akai M, Nakazawa K (2005) Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons. J Neurophysiol 93:777–785

    Article  PubMed  Google Scholar 

  • Krebs HI, Hogan N, Volpe BT, Aisen ML, Diels C (1999) Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol Health Care 7:419–423

    CAS  PubMed  Google Scholar 

  • Langhorne P, Bernhardt J, Kwakkel G (2011) Stroke rehabilitation. Lancet 377:1693–1702

    Article  PubMed  Google Scholar 

  • Levy-Tzedek S, Krebs HI, Song D, Hogan N, Poizner H (2010) Non-monotonicity on a spatio-temporally defined cyclic task: evidence of two movement types? Exp Brain Res 202:733–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy-Tzedek S, Krebs HI, Arle JE, Shils JL, Poizner H (2011) Rhythmic movement in Parkinson’s disease: effects of visual feedback and medication state. Exp Brain Res 211:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luft AR, McCombe-Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, Schulz JB, Goldberg AP, Hanley DF (2004) Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA 292:1853–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:R986–R996

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni P, Hristova A, Krakauer JW (2007) Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J Neurosci 27:7105–7116

    Article  CAS  PubMed  Google Scholar 

  • Nozaki D, Kurtzer I, Scott SH (2006) Limited transfer of learning between unimanual and bimanual skills within the same limb. Nat Neurosci 9:1364–1366

    Article  CAS  PubMed  Google Scholar 

  • Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N (2002) Movement smoothness changes during stroke recovery. J Neurosci 22:8297–8304

    CAS  PubMed  Google Scholar 

  • Ronsse R, Sternad D, Lefevre P (2009) A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Comput 21:1335–1370

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronsse R, Puttemans V, Coxon JP, Goble DJ, Wagemans J, Wenderoth N, Swinnen SP (2011) Motor learning with augmented feedback: modality-dependent behavioral and neural consequences. Cereb Cortex 21:1283–1294

    Article  PubMed  Google Scholar 

  • Schaal S, Kotosaka S, Sternad D (2000) Nonlinear dynamical systems as movement primitives. In: IEEE international conference on humanoid robotics, pp 1–11. http://wwwiaim.ira.uka.de/users/rogalla/WebOrdnerMaterial/schaal-ICHR2000.pdf. Accessed 17 Feb 2015

  • Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7:1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185:359–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666

    CAS  PubMed  Google Scholar 

  • Simkins M, Jacobs AB, Rosen J (2013) Rhythmic affects on stroke-induced joint synergies across a range of speeds. Exp Brain Res 229:517–524

    Article  PubMed  Google Scholar 

  • Smits-Engelsman B, Swinnen S, Duysens J (2006) The advantage of cyclic over discrete movements remains evident following changes in load and amplitude. Neurosci Lett 396:28–32

    Article  CAS  PubMed  Google Scholar 

  • Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB (2003) Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300:1437–1439

    Article  CAS  PubMed  Google Scholar 

  • Spencer RMC, Ivry RB, Zelaznik HN (2005) Role of the cerebellum in movements: control of timing or movement transitions? Exp Brain Res 161:383–396

    Article  PubMed  Google Scholar 

  • Sternad D, Dean WJ (2003) Rhythmic and discrete elements in multi-joint coordination. Brain Res 989:152–171

    Article  CAS  PubMed  Google Scholar 

  • Sternad D, Dean WJ, Schaal S (2000) Interaction of rhythmic and discrete pattern generators in single-joint movements. Hum Mov Sci 19:627–664

    Article  Google Scholar 

  • Sternad D, Marino H, Charles SK, Duarte M, Dipietro L, Hogan N (2013) Transitions between discrete and rhythmic primitives in a unimanual task. Front Comput Neurosci 7:90. doi:10.3389/fncom.2013.00090

    Article  PubMed  PubMed Central  Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci 3:348–359

    Article  PubMed  Google Scholar 

  • Van Mourik AM, Beek PJ (2004) Discrete and cyclical movements: unified dynamics or separate control? Acta Psychol (Amst) 117:121–138

    Article  Google Scholar 

  • Whitall J, Waller SM, Silver KH, Macko RF (2000) Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 31:2390–2395

    Article  CAS  PubMed  Google Scholar 

  • White O, Bleyenheuft Y, Ronsse R, Smith AM, Thonnard J-L, Lefevre P (2008) Altered gravity highlights central pattern generator mechanisms. J Neurophysiol 100:2819–2824

    Article  PubMed  Google Scholar 

  • Zehr EP, Duysens J (2004) Regulation of arm and leg movement during human locomotion. Neuroscientist 10:347–361

    Article  PubMed  Google Scholar 

  • Zehr EP, Carroll TJ, Chua R, Collins DF, Frigon A, Haridas C, Hundza SR, Thompson AK (2004) Possible contributions of CPG activity to the control of rhythmic human arm movement. Can J Physiol Pharmacol 82:556–568

    Article  CAS  PubMed  Google Scholar 

  • Zehr EP, Loadman PM, Hundza SR (2012) Neural control of rhythmic arm cycling after stroke. J Neurophysiol 108:891–905

    Article  PubMed  PubMed Central  Google Scholar 

  • Zondervan DK, Smith B, Reinkensmeyer DJ (2013) Lever-actuated resonance assistance (LARA): a wheelchair-based method for upper extremity therapy and overground ambulation for people with severe arm impairment. In: Rehabilitation robotics (ICORR), International conference on IEEE, pp 1–6. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6650400. Accessed 7 Oct 2014b

  • Zondervan DK, Palafox L, Hernandez J, Reinkensmeyer DJ (2013b) The resonating arm exerciser: design and pilot testing of a mechanically passive rehabilitation device that mimics robotic active assistance. J Neuroeng Rehabil 10:39

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Catherine Rasse for her support with the statistics, the subjects for their availability to participate in the study and the physiotherapists who helped in recruitment of the patients.

Funding

This work was supported by the Belgian F.R.S.-FNRS (FRIA grant awarded to PL, Fonds pour la Recherche dans l’Industrie et l’Agriculture) and by the “Fondation van Goethem Brichant.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Ronsse.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 562 kb)

Glossary

D-T

Discrete task with small targets

FMA-UE

Fugl-Meyer assessment of the upper extremity

H

Harmonicity index

ID

Index of difficulty

PEAK

Number of peaks in the velocity profile

LDJ

Logarithmic dimensionless jerk

R-T

Rhythmic task with large targets

R-NT

Rhythmic task without targets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leconte, P., Orban de Xivry, JJ., Stoquart, G. et al. Rhythmic arm movements are less affected than discrete ones after a stroke. Exp Brain Res 234, 1403–1417 (2016). https://doi.org/10.1007/s00221-015-4543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4543-y

Keywords

Navigation