Experimental Brain Research

, Volume 234, Issue 4, pp 997–1012 | Cite as

Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study

  • Fatemeh Yavari
  • Shirin Mahdavi
  • Farzad Towhidkhah
  • Mohammad-Ali Ahmadi-Pajouh
  • Hamed Ekhtiari
  • Mohammad Darainy
Research Article


Despite several pieces of evidence, which suggest that the human brain employs internal models for motor control and learning, the location of these models in the brain is not yet clear. In this study, we used transcranial direct current stimulation (tDCS) to manipulate right cerebellar function, while subjects adapt to a visuomotor task. We investigated the effect of this manipulation on the internal forward and inverse models by measuring two kinds of behavior: generalization of training in one direction to neighboring directions (as a proxy for inverse models) and localization of the hand position after movement without visual feedback (as a proxy for forward model). The experimental results showed no effect of cerebellar tDCS on generalization, but significant effect on localization. These observations support the idea that the cerebellum is a possible brain region for internal forward, but not inverse model formation. We also used a realistic human head model to calculate current density distribution in the brain. The result of this model confirmed the passage of current through the cerebellum. Moreover, to further explain some observed experimental results, we modeled the visuomotor adaptation process with the help of a biologically inspired method known as population coding. The effect of tDCS was also incorporated in the model. The results of this modeling study closely match our experimental data and provide further evidence in line with the idea that tDCS manipulates FM’s function in the cerebellum.


Cerebellum Visuomotor adaptation Internal forward model Internal inverse model tDCS Population coding Finite element analysis 



The authors would like to thank Prof. Jun Izawa for his valuable comments throughout this research and also Dimitrios Palidis for his great comments in editing the manuscript grammatically.

Compliance with ethical standards

Conflict of interest

I hereby confirm that there is no conflict of interest in this research.


  1. Balitsky Thompson AK, Henriques DY (2010) Visuomotor adaptation and intermanual transfer under different viewing conditions. Exp Brain Res 202(3):543–552. doi: 10.1007/s00221-010-2155-0 CrossRefPubMedGoogle Scholar
  2. Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81(1):39–60CrossRefPubMedGoogle Scholar
  3. Bikson M, Rahman A, Datta A, Fregni F, Merabet L (2012) High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation 15(4):306–315. doi: 10.1111/j.1525-1403.2012.00481.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bindman LJ, Lippold OC, Redfearn JW (1962) Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature 196:584–585CrossRefPubMedGoogle Scholar
  5. Bindman LJ, Lippold OC, Redfearn JW (1964) The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 172:369–382CrossRefPubMedPubMedCentralGoogle Scholar
  6. Birbaumer N (2007) Motor learning: passing a skill from one hand to the other. Curr Biol 17(23):R1024–R1026CrossRefPubMedGoogle Scholar
  7. Blakemore S-J, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. NeuroReport 12(9):1879–1884CrossRefPubMedGoogle Scholar
  8. Block H, Celnik P (2013) Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning. Cerebellum 12(6):781–793. doi: 10.1007/s12311-013-0486-7 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boehringer A, Macher K, Dukart J, Villringer A, Pleger B (2013) Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul 6(4):649–653. doi: 10.1016/j.brs.2012.10.001 CrossRefPubMedGoogle Scholar
  10. Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, Fregni F (2006) Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci 249(1):31–38CrossRefPubMedGoogle Scholar
  11. Cerminara NL, Apps R, Marple-Horvat DE (2009) An internal model of a moving visual target in the lateral cerebellum. J Physiol 587(Pt 2):429–442. doi: 10.1113/jphysiol.2008.163337 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Coltz JD, Johnson MT, Ebner TJ (2000) Population code for tracking velocity based on cerebellar Purkinje cell simple spike firing in monkeys. Neurosci Lett 296(1):1–4CrossRefPubMedGoogle Scholar
  13. Cressman EK, Henriques DY (2009) Sensory recalibration of hand position following visuomotor adaptation. J Neurophysiol 102(6):3505–3518. doi: 10.1152/jn.00514.2009 CrossRefPubMedGoogle Scholar
  14. Cullen KE, Brooks JX, Jamali M, Carriot J, Massot C (2011) Internal models of self-motion: computations that suppress vestibular reafference in early vestibular processing. Exp Brain Res 210(3–4):377–388CrossRefPubMedGoogle Scholar
  15. Darainy M, Vahdat S, Ostry DJ (2013) Perceptual learning in sensorimotor adaptation. J Neurophysiol 110(9):2152–2162. doi: 10.1152/jn.00439.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M (2009) Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul 2(4):201.e201–207.e201. doi: 10.1016/j.brs.2009.03.005 CrossRefGoogle Scholar
  17. Diedrichsen J, White O, Newman D, Lally N (2010) Use-dependent and error-based learning of motor behaviors. J Neurosci 30(15):5159–5166. doi: 10.1523/JNEUROSCI.5406-09.2010 CrossRefPubMedGoogle Scholar
  18. Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, Priori A (2008) Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci 20(9):1687–1697. doi: 10.1162/jocn.2008.20112 CrossRefPubMedGoogle Scholar
  19. Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, Priori A (2012) Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot 26(5):786–799. doi: 10.1080/02699931.2011.619520 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, Priori A (2013) Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum 12(4):485–492. doi: 10.1007/s12311-012-0436-9 CrossRefPubMedGoogle Scholar
  21. Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17(4):1519–1528PubMedGoogle Scholar
  22. Flanagan JR, Vetter P, Johansson RS, Wolpert DM (2003) Prediction precedes control in motor learning. Curr Biol 13(2):146–150CrossRefPubMedGoogle Scholar
  23. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Pascual-Leone A (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166(1):23–30. doi: 10.1007/s00221-005-2334-6 CrossRefPubMedGoogle Scholar
  24. Galea JM, Jayaram G, Ajagbe L, Celnik P (2009) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29(28):9115–9122. doi: 10.1523/JNEUROSCI.2184-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P (2011) Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex 21(8):1761–1770. doi: 10.1093/cercor/bhq246 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gartside IB (1968) Mechanisms of sustained increases of firing rate of neurons in the rat cerebral cortex after polarization: reverberating circuits or modification of synaptic conductance? Nature 220(5165):382–383CrossRefPubMedGoogle Scholar
  27. Gentili RJ, Shewokis PA, Ayaz H, Contreras-Vidal JL (2013) Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task. Front Hum Neurosci 7:277. doi: 10.3389/fnhum.2013.00277 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233(4771):1416–1419CrossRefPubMedGoogle Scholar
  29. Gomi H, Kawato M (1992) Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biol Cybern 68(2):105–114CrossRefPubMedGoogle Scholar
  30. Gonzalez Castro LN, Monsen CB, Smith MA (2011) The binding of learning to action in motor adaptation. PLoS Comput Biol 7(6):e1002052. doi: 10.1371/journal.pcbi.1002052 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Haggard P, Newman C, Blundell J, Andrew H (2000) The perceived position of the hand in space. Percept Psychophys 62(2):363–377CrossRefPubMedGoogle Scholar
  32. Higuchi S, Imamizu H, Kawato M (2007) Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex 43(3):350–358CrossRefPubMedGoogle Scholar
  33. Hummel F, Celnik P, Giraux P, Floel A, Wu W-H, Gerloff C, Cohen LG (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128(3):490–499CrossRefPubMedGoogle Scholar
  34. Imamizu H, Kawato M (2012) Cerebellar internal models: implications for the dexterous use of tools. The Cerebellum 11(2):325–335CrossRefPubMedGoogle Scholar
  35. Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403(6766):192–195. doi: 10.1038/35003194 CrossRefPubMedGoogle Scholar
  36. Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M (2003) Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci U S A 100(9):5461–5466. doi: 10.1073/pnas.0835746100 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Iyer M, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann E (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64(5):872–875CrossRefPubMedGoogle Scholar
  38. Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar contributions to reach adaptation and learning sensory consequences of action. J Neurosci 32(12):4230–4239. doi: 10.1523/JNEUROSCI.6353-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A (2012) Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol 107(11):2950–2957. doi: 10.1152/jn.00645.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jola C, Davis A, Haggard P (2011) Proprioceptive integration and body representation: insights into dancers’ expertise. Exp Brain Res 213(2–3):257–265CrossRefPubMedGoogle Scholar
  41. Jones SA, Cressman EK, Henriques DY (2010) Proprioceptive localization of the left and right hands. Exp Brain Res 204(3):373–383. doi: 10.1007/s00221-009-2079-8 CrossRefPubMedGoogle Scholar
  42. Jordan MI, Rumelhart DE (1992) Forward models: supervised learning with a distal teacher. Cognitive science 16(3):307–354CrossRefGoogle Scholar
  43. Katayama M, Kawato M (1993) Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models. Biol Cybern 69(5–6):353–362CrossRefPubMedGoogle Scholar
  44. Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727CrossRefPubMedGoogle Scholar
  45. Kawato M, Gomi H (1992a) The cerebellum and VOR/OKR learning models. Trends Neurosci 15(11):445–453CrossRefPubMedGoogle Scholar
  46. Kawato M, Gomi H (1992b) A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern 68(2):95–103CrossRefPubMedGoogle Scholar
  47. Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57(3):169–185CrossRefPubMedGoogle Scholar
  48. Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188. doi: 10.1016/S0079-6123(03)42013-X CrossRefPubMedGoogle Scholar
  49. Kitago T, Ryan SL, Mazzoni P, Krakauer JW, Haith AM (2013) Unlearning versus savings in visuomotor adaptation: comparing effects of washout, passage of time, and removal of errors on motor memory. Front Hum Neurosci 7:307. doi: 10.3389/fnhum.2013.00307 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Krauzlis RJ (2000) Population coding of movement dynamics by cerebellar Purkinje cells. NeuroReport 11(5):1045–1050CrossRefPubMedGoogle Scholar
  51. Laurens, J., Meng, H., & Angelaki, D. E. (2013). Computation of linear acceleration through an internal model in the macaque cerebellum. Nature neuroscience Google Scholar
  52. Li CS, Padoa-Schioppa C, Bizzi E (2001) Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30(2):593–607CrossRefPubMedGoogle Scholar
  53. Liebetanz D, Koch R, Mayenfels S, König F, Paulus W, Nitsche MA (2009) Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol 120(6):1161–1167CrossRefPubMedGoogle Scholar
  54. Lisberger SG (2009) Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience 162(3):763–776. doi: 10.1016/j.neuroscience.2009.03.059 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Liu X, Robertson E, Miall RC (2003) Neuronal activity related to the visual representation of arm movements in the lateral cerebellar cortex. J Neurophysiol 89(3):1223–1237CrossRefPubMedGoogle Scholar
  56. Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49(5):1127–1147PubMedGoogle Scholar
  57. Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a smith predictor? J Mot Behav 25(3):203–216. doi: 10.1080/00222895.1993.9942050 CrossRefPubMedGoogle Scholar
  58. Miall RC, Christensen LO, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5(11):e316. doi: 10.1371/journal.pbio.0050316 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Milner TE, Franklin DW, Imamizu H, Kawato M (2007) Central control of grasp: manipulation of objects with complex and simple dynamics. Neuroimage 36(2):388–395. doi: 10.1016/j.neuroimage.2007.01.057 CrossRefPubMedGoogle Scholar
  60. Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26(36):9107–9116. doi: 10.1523/JNEUROSCI.2622-06.2006 CrossRefPubMedGoogle Scholar
  61. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003a) Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl Clin Neurophysiol 56(3):255–276CrossRefPubMedGoogle Scholar
  63. Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F (2003b) Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci 15(4):619–626. doi: 10.1162/089892903321662994 CrossRefPubMedGoogle Scholar
  64. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1(3):206–223. doi: 10.1016/j.brs.2008.06.004 CrossRefPubMedGoogle Scholar
  65. Nowak DA, Topka H, Timmann D, Boecker H, Hermsdorfer J (2007) The role of the cerebellum for predictive control of grasping. Cerebellum 6(1):7–17. doi: 10.1080/14734220600776379 CrossRefPubMedGoogle Scholar
  66. Parlow SE, Kinsbourne M (1989) Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn 11(1):98–113CrossRefPubMedGoogle Scholar
  67. Pasalar S, Roitman A, Durfee W, Ebner T (2006) Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci 9(11):1404–1411CrossRefPubMedGoogle Scholar
  68. Plonsey R, Heppner DB (1967) Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys 29(4):657–664CrossRefPubMedGoogle Scholar
  69. Pope PA, Miall RC (2012) Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul 5(2):84–94. doi: 10.1016/j.brs.2012.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pouget A, Dayan P, Zemel R (2000) Information processing with population codes. Nat Rev Neurosci 1(2):125–132. doi: 10.1038/35039062 CrossRefPubMedGoogle Scholar
  71. Purpura DP, McMurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28:166–185PubMedGoogle Scholar
  72. Richardson AG, Overduin SA, Valero-Cabré A, Padoa-Schioppa C, Pascual-Leone A, Bizzi E, Press DZ (2006) Disruption of primary motor cortex before learning impairs memory of movement dynamics. J Neurosci 26(48):12466–12470CrossRefPubMedGoogle Scholar
  73. Rossetti Y, Meckler C, Prablanc C (1994) Is there an optimal arm posture? Deterioration of finger localization precision and comfort sensation in extreme arm-joint postures. Exp Brain Res 99(1):131–136CrossRefPubMedGoogle Scholar
  74. Sabes PN (2000) The planning and control of reaching movements. Curr Opin Neurobiol 10(6):740–746CrossRefPubMedGoogle Scholar
  75. Sadnicka A, Kassavetis P, Saifee TA, Parees I, Rothwell JC, Edwards MJ (2013) Cerebellar transcranial direct current stimulation does not alter motor surround inhibition. Int J Neurosci 123(6):425–432. doi: 10.3109/00207454.2012.763165 CrossRefPubMedGoogle Scholar
  76. Saidi M, Towhidkhah F, Lagzi F, Gharibzadeh S (2012) The effect of proprioceptive training on multisensory perception under visual uncertainty. J Integr Neurosci 11(4):401–415. doi: 10.1142/S0219635212500276 CrossRefPubMedGoogle Scholar
  77. Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145(4):437–447. doi: 10.1007/s00221-002-1140-7 CrossRefPubMedGoogle Scholar
  78. Shadmehr R (2004) Generalization as a behavioral window to the neural mechanisms of learning internal models. Hum Mov Sci 23(5):543–568CrossRefPubMedPubMedCentralGoogle Scholar
  79. Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185(3):359–381. doi: 10.1007/s00221-008-1280-5 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14(5 Pt 2):3208–3224PubMedGoogle Scholar
  81. Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108. doi: 10.1146/annurev-neuro-060909-153135 CrossRefPubMedGoogle Scholar
  82. Shah B, Nguyen TT, Madhavan S (2013) Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimul. doi: 10.1016/j.brs.2013.04.008 PubMedGoogle Scholar
  83. Shahid SS, Bikson M, Salman H, Wen P, Ahfock T (2014) The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation. J Neural Eng 11(3):036002. doi: 10.1088/1741-2560/11/3/036002 CrossRefPubMedGoogle Scholar
  84. Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365(6441):50–52. doi: 10.1038/365050a0 CrossRefPubMedGoogle Scholar
  85. Smeets JB, van den Dobbelsteen JJ, de Grave DD, van Beers RJ, Brenner E (2006) Sensory integration does not lead to sensory calibration. Proc Natl Acad Sci 103(49):18781–18786CrossRefPubMedPubMedCentralGoogle Scholar
  86. Synofzik M, Lindner A, Thier P (2008) The cerebellum updates predictions about the visual consequences of one’s behavior. Curr Biol 18(11):814–818CrossRefPubMedGoogle Scholar
  87. Taguchi S, Tabata H, Shibata T, Kawato M (2004) Transformation from population codes to firing rate codes by learning: neural representation of smooth pursuit eye movements. Syst Comput Jpn 35(6):79–88CrossRefGoogle Scholar
  88. Taylor JA, Wojaczynski GJ, Ivry RB (2011) Trial-by-trial analysis of intermanual transfer during visuomotor adaptation. J Neurophysiol 106(6):3157–3172. doi: 10.1152/jn.01008.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Towhidkhah F, Gander RE, Wood HC (1997) Model predictive impedance control: a model for joint movement. J Mot Behav 29(3):209–222. doi: 10.1080/00222899709600836 CrossRefPubMedGoogle Scholar
  90. Usrey WM, Reid RC (1999) Synchronous activity in the visual system. Annu Rev Physiol 61:435–456. doi: 10.1146/annurev.physiol.61.1.435 CrossRefPubMedGoogle Scholar
  91. van Beers RJ, Sittig AC, Denier van der Gon JJ (1998) The precision of proprioceptive position sense. Exp Brain Res 122(4):367–377CrossRefPubMedGoogle Scholar
  92. van Beers RJ, Wolpert DM, Haggard P (2002) When feeling is more important than seeing in sensorimotor adaptation. Curr Biol 12(10):834–837CrossRefPubMedGoogle Scholar
  93. von Hofsten C, Rosblad B (1988) The integration of sensory information in the development of precise manual pointing. Neuropsychologia 26(6):805–821CrossRefGoogle Scholar
  94. Wang J (2008) A dissociation between visual and motor workspace inhibits generalization of visuomotor adaptation across the limbs. Exp Brain Res 187(3):483–490. doi: 10.1007/s00221-008-1393-x CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wang J, Sainburg RL (2006) The symmetry of interlimb transfer depends on workspace locations. Exp Brain Res 170(4):464–471. doi: 10.1007/s00221-005-0230-8 CrossRefPubMedGoogle Scholar
  96. Wilson ET, Wong J, Gribble PL (2010) Mapping proprioception across a 2D horizontal workspace. PLoS ONE 5(7):e11851. doi: 10.1371/journal.pone.0011851 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7):1317–1329CrossRefPubMedGoogle Scholar
  98. Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science-New York then Washington, 1880–1880Google Scholar
  99. Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2(9):338–347CrossRefPubMedGoogle Scholar
  100. Yavari F, Towhidkhah F (2014) Modeling the effect of explicit information in visuomotor adaptation. Paper presented at the 22nd Iranian Conference on electrical engineering (ICEE)Google Scholar
  101. Yavari F, Towhidkhah F, Ahmadi-Pajouh MA (2013) Are fast/slow process in motor adaptation and forward/inverse internal model two sides of the same coin? Med Hypotheses 81(4):592–600. doi: 10.1016/j.mehy.2013.07.009 CrossRefPubMedGoogle Scholar
  102. Yavari F, Towhidkhah F, Darainy M (2014) A hypothesis on the role of perturbation size on the human sensorimotor adaptation. Front Comput Neurosci 8:1–3CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fatemeh Yavari
    • 1
    • 2
  • Shirin Mahdavi
    • 1
  • Farzad Towhidkhah
    • 1
  • Mohammad-Ali Ahmadi-Pajouh
    • 1
  • Hamed Ekhtiari
    • 2
    • 3
    • 4
  • Mohammad Darainy
    • 5
  1. 1.Biomedical Engineering DepartmentAmirkabir University of TechnologyTehranIran
  2. 2.Neurocognitive Laboratory, Iranian National Center for Addiction Studies (INCAS)Tehran University of Medical SciencesTehranIran
  3. 3.Translational Neuroscience ProgramInstitute for Cognitive Science Studies (ICSS)TehranIran
  4. 4.Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging (RCMCI)Tehran University of Medical SciencesTehranIran
  5. 5.Department of PsychologyMcGill UniversityMontrealCanada

Personalised recommendations