Skip to main content
Log in

Differential neural activity patterns for spatial relations in humans: a MEG study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Children learn the words for abovebelow relations earlier than for leftright relations, despite treating these equally well in a simple visual categorization task. Even as adults—conflicts in congruency, such as when a stimulus is depicted in a spatially incongruent manner with respect to salient global cues—can be challenging. Here we investigated the neural correlates of encoding and maintaining in working memory abovebelow and leftright relational planes in 12 adults using magnetoencephalography in order to discover whether abovebelow relations are represented by the brain differently than leftright relations. Adults performed perfectly on the task behaviorally, so any differences in neural activity were attributed to the stimuli’s cognitive attributes. In comparing abovebelow to leftright relations during stimulus encoding, we found the greatest differences in neural activity in areas associated with space and movement. In comparing congruent to incongruent trials, we found the greatest differential activity in premotor areas. For both contrasts, brain areas involved in the encoding phase were also involved in the maintenance phase, which provides evidence that those brain areas are particularly important in representing the relational planes or congruency types throughout the trial. When comparing neural activity associated with the relational planes during working memory, additional right posterior areas were implicated, whereas the congruent-incongruent contrast implicated additional bilateral frontal and temporal areas. These findings are consistent with the hypothesis leftright relations are represented differently than abovebelow relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amorapanth PX, Widick P, Chatterjee A (2009) The neural basis for spatial relations. J Cogn Neurosci 22:1739–1753

    Article  Google Scholar 

  • Anglade C, Thiel A, Ansaldo AI (2014) The complementary role of the cerebral hemispheres in recovery from aphasia after stroke: a critical review of literature. Brain Inj 28:138–45. doi:10.3109/02699052.2013.859734

    Article  PubMed  Google Scholar 

  • Baciu M, Koenig O, Vernier MP et al (1999) Categorical and coordinate spatial relations: fMRI evidence for hemispheric specialization. NeuroReport 10:1373–1378

    Article  PubMed  CAS  Google Scholar 

  • Baldo JV, Bunge SA, Wilson SM, Dronkers NF (2010) Is relational reasoning dependent on language? A voxel-based lesion symptom mapping study. Brain Lang 113:59–64. doi:10.1016/j.bandl.2010.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowers JM, Bradley KI, Kennison M (2013) Hemispheric differences in the processing of words learned early versus later in childhood. J Gen Psychol 140:174–186

    Article  PubMed  Google Scholar 

  • Brandt J, Mackavey W (1981) Left–right confusion and the perception of bilateral symmetry. Int J Neurosci 12:87–94

    Article  PubMed  CAS  Google Scholar 

  • Bunge S, Wendelken C, Badre D, Wagner AD (2005) Analogical reasoning and prefrontal cortex: evidence for separable retrieval and integration mechanisms. Cereb Cortex 15:239–249. doi:10.1093/cercor/bhh126

    Article  PubMed  Google Scholar 

  • Carlson LA, West R, Taylor HA, Herndon RW (2002) Neural correlates of spatial term use. J Exp Psychol Hum Percept Perform 28:1391–1408

    Article  PubMed  Google Scholar 

  • Chafee MV, Averbeck BB, Crowe DA (2007) Representing spatial relationships in posterior parietal cortex: single neurons code object-referenced position. Cereb Cortex 17:2914–2932. doi:10.1093/cercor/bhm017

    Article  PubMed  Google Scholar 

  • Christoff K, Prabhakaran V, Dorfman J et al (2001) Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage 14:1136–1149. doi:10.1006/nimg.2001.0922

    Article  PubMed  CAS  Google Scholar 

  • Clark EV (1980) Here’s the “Top:” nonlinguistic strategies in the acquisition of orientational terms. Child Dev 51:329–338

    Google Scholar 

  • Corballis MC, Beale IL (1970) Bilateral symmetry and behavior. Psychol Rev 77:451–464

    Article  PubMed  CAS  Google Scholar 

  • Corkin S (2002) What’s new with the amnesic patient H.M.? Nat Rev Neurosci 3:153–160

    Article  PubMed  CAS  Google Scholar 

  • Cox MV, Richardson TR (1985) How do children describe spatial relationships? J Child Lang 12:611–620. doi:10.1017/S0305000900006681

    Article  PubMed  CAS  Google Scholar 

  • Crone EA, Wendelken C, van Leijenhortst L et al (2009) Neurocognitive development of relational reasoning. Dev Sci 12:55–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Damasio H (2005) Human brain anatomy in computerized images, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  • Damasio H, Grabowski TJ, Tranel D et al (2001) Neural correlates of naming actions and of naming spatial relations. NeuroImage 13:1053–1064. doi:10.1006/nimg.2001.0775

    Article  PubMed  CAS  Google Scholar 

  • Dessalegn B, Landau B (2008) More than meets the eye. Psychol Sci 19:189–195

    Article  PubMed  Google Scholar 

  • Farrant K, Uddin LQ (2015) Asymmetric development of dorsal and ventral attention networks in the human brain. Dev Cogn Neurosci. doi:10.1016/j.dcn.2015.02.001

    PubMed  Google Scholar 

  • Fiebach CJ, Friederici AD, Müller K et al (2003) Distinct brain representations for early and late learned words. Neuroimage 19:1627–1637. doi:10.1016/S1053-8119(03)00227-1

    Article  PubMed  Google Scholar 

  • Franciotti R, D’Ascenzo S, Di Domenico A et al (2013) Focusing narrowly or broadly attention when judging categorical and coordinate spatial relations: a MEG study. PLoS ONE. doi:10.1371/journal.pone.0083434

    Google Scholar 

  • Gava L, Valenza E, Turati C (2009) Newborns’ perception of left–right spatial relations. Child Dev 80:1797–1810

    Article  PubMed  Google Scholar 

  • Gerstmann J (1940) Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia. Arch Neurol Psychiatry 44:398–408

    Article  Google Scholar 

  • Goodwin SJ, Blackman RK, Sakellaridi S, Chafee MV (2012) Using rules to define categories: asymmetric distribution of executive control signals in the monkey prefrontal–parietal network. J Neurosci 32:3499–3515. doi:10.1523/JNEUROSCI.3585-11.2012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hannay HJ, Ciaccia PJ, Kerr JW, Barrett D (1990) Self-report of right–left confusion in college men and women. Percept Mot Skills 70:451–457

    Article  PubMed  CAS  Google Scholar 

  • Hayward WG, Tarr MJ (1995) Spatial language and spatial representation. Cognition 55:39–84

    Article  PubMed  CAS  Google Scholar 

  • Hirnstein M, Ocklenburg S, Schneider D, Hausmann M (2009) Sex differences in left–right confusion depend on hemispheric asymmetry. Cortex 45:891–899

    Article  PubMed  Google Scholar 

  • Jordan K, Wustenberg T, Jaspers-Feyer F et al (2006) Sex differences in left/right confusion. Cortex 42:69–78

    Article  PubMed  Google Scholar 

  • Karnath HO, Ferber S, Himmelbach M (2005) Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411:950–953

    Article  Google Scholar 

  • Klingberg T, Forssberg H, Westerberg H (2002) Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J Cogn Neurosci 14:1–10

    Article  PubMed  Google Scholar 

  • Kosslyn SM, Thompson WL, Gitelman DR, Alpert NM (1998) Neural systems that encode categorical versus coordinate spatial relations: PET investigations. Psychobiology 26:333–347

    Google Scholar 

  • Krawczyk DC (2012) The cognition and neuroscience of relational reasoning. Brain Res 1428:13–23. doi:10.1016/j.brainres.2010.11.080

    Article  PubMed  CAS  Google Scholar 

  • Krawczyk DC, Michelle McClelland M, Donovan CM (2011) A hierarchy for relational reasoning in the prefrontal cortex. Cortex 47:588–597. doi:10.1016/j.cortex.2010.04.008

    Article  PubMed  Google Scholar 

  • Laeng B, Okubo M, Saneyoshi A, Michimata C (2011) Processing spatial relations with different apertures of attention. Cogn Sci 35:297–329

    Article  PubMed  Google Scholar 

  • Landau B, Hoffman JE (2005) Parallels between spatial cognition and spatial language: evidence from Williams syndrome. J Mem Lang 53:163–185. doi:10.1016/j.jml.2004.05.007

    Article  Google Scholar 

  • Li P, Gleitman L (2002) Turning the tables: language and spatial reasoning. Cognition 83:265–294

    Article  PubMed  CAS  Google Scholar 

  • Mach E (1959/1897) The analysis of sensations. Open Court Publishing House, Chicago

  • MacLeod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109:163–203

    Article  PubMed  CAS  Google Scholar 

  • Martin AJ, Sera MD (2006) The acquisition of spatial constructions in American sign language and English. J Deaf Stud Deaf Educ 11:391–402. doi:10.1093/deafed/enl004

    Article  PubMed  Google Scholar 

  • Niebauer CL (2001) A possible connection between categorical and coordinate spatial relation representations. Brain Cogn 47:434–445

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Peterson BS, Kane MJ, Alexander GM et al (2002) An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cogn Brain Res 13:427–440

    Article  Google Scholar 

  • Pozuelos JP, Pazalonso PM, Castillo A et al (2014) Development of attention networks and their interactions in childhood. Dev Psychol 50:2405–2415

    Article  PubMed  Google Scholar 

  • Price CJ, Friston KJ (2005) Functional ontologies for cognition: the systematic definition of structure and function. Cogn Neuropsychol 22:262–275. doi:10.1080/02643290442000095

    Article  PubMed  Google Scholar 

  • Quinn PC (2007) On the infant’s prelinguistic conception of spatial relations: three developmental trends and their implications for spatial language learning. In: Plumert JM, Spencer JP (eds) The emerging spatial mind. Oxford University Press, New York, pp 117–141

    Chapter  Google Scholar 

  • Ruff CC, Knauff M, Fangmeier T, Spreer J (2003) Reasoning and working memory: common and distinct neuronal processes. Neuropsychologia 41:1241–1253. doi:10.1016/S0028-3932(03)00016-2

    Article  PubMed  Google Scholar 

  • Scott NM, Georgopoulos A, Sera M (2015a) Accessibility to relational terms aids nonverbal relational judgments. Poster presented at Society for Research in Child Development, Philadelphia, PA

  • Scott NM, Sera M, Georgopoulos A (2015b) An information theory analysis of spatial decisions in cognitive development. Front Neurosci 9:14. doi:10.3389/fnins.2015.00014

    Article  PubMed  PubMed Central  Google Scholar 

  • Semel E, Rosner SR (2003) Understanding Williams syndrome. Erlbaum, Mahwah

    Google Scholar 

  • Shelton AL, Gabrieli JDE (2002) Neural correlates of encoding space from route and survey perspectives. J Neurosci 22:2711–2717

    PubMed  CAS  Google Scholar 

  • Sholl MJ, Egeth HE (1981) Right–left confusion in the adult: a verbal labeling effect. Mem Cognition 9:339–350

    Article  CAS  Google Scholar 

  • Simon JR (1969) Reactions toward the source of stimulation. J Exp Psychol 81:174–176

    Article  PubMed  CAS  Google Scholar 

  • Slotnick SD, Moo LR, Tesoro MA, Hart J (2001) Hemispheric asymmetry in categorical versus coordinate visuospatial processing revealed by temporary cortical deactivation. J Cogn Neurosci 13:1088–1096

    Article  PubMed  CAS  Google Scholar 

  • Stieff M, Dixon BL, Minjung M et al (2013) Strategy training eliminates sex differences in spatial problem solving in a STEM domain. J Educ Psychol 106:390–402. doi:10.1037/a0034823

    Article  Google Scholar 

  • Uttal DH, Meadow NG, Tipton E et al (2013) The malleability of spatial skills: a meta-analysis of training studies. Psychol Bull 139:352–402. doi:10.1037/a0028446

    Article  PubMed  Google Scholar 

  • Vendetti MS, Matlen BJ, Richland LE, Bunge SA (2015) Analogical reasoning in the classroom: insights from cognitive science. Mind Brain Educ 9:100–106

    Article  Google Scholar 

  • Verdine BN, Golinkoff RM, Hirsh-Pasek K et al (2014) Deconstructing building blocks: preschoolers’ spatial assembly performance relates to early mathematical skills. Child Dev 85:1062–1076. doi:10.1111/cdev.12165

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li X, Hsiao SS, Lenz FA, Bodner M, Zhou YD, Fuster JM (2015) Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory. Proc Natl Acad Sci USA 112:E214–E219. doi:10.1073/pnas.1410130112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wendelken C, Chung D, Bunge S (2012) Rostrolateral prefrontal cortex: domain-general or domain-sensitive? Hum Brain Mapp 33:1952–1963. doi:10.1002/hbm.21336

    Article  PubMed  PubMed Central  Google Scholar 

  • Wendelken C, Ferrer E, Whitaker KJ, Bunge S (2015) Fronto-parietal network reconfiguration supports the development of reasoning ability. Cereb Cortex. doi:10.1093/cercor/bhv050

    Google Scholar 

  • Wittfoth M, Buck D, Fahle M, Herrmann M (2006) Comparison of two Simon tasks: neuronal correlates of conflict resolution based on coherent motion perception. Neuroimage 32:921–929. doi:10.1016/j.neuroimage.2006.03.034

    Article  PubMed  Google Scholar 

  • Wright SB, Matlen BJ, Baym CL et al (2008) Neural correlates of fluid reasoning in children and adults. Front Hum Neurosci 1:8. doi:10.3389/neuro.09/008.2007

    PubMed  PubMed Central  Google Scholar 

  • Yantis S, Serences JT (2003) Cortical mechanisms of space-based and object-based attentional control. Curr Opin Neurobiol 13:187–193. doi:10.1016/S0959-4388(03)00033-3

    Article  PubMed  CAS  Google Scholar 

  • Zacks JM, Michelon P (2005) Transformations of visuospatial images. Behav Cogn Neurosci Rev 4:96–118. doi:10.1177/1534582305281085

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a University of Minnesota Interdisciplinary Doctoral Fellowship, a University of Minnesota Doctoral Dissertation Fellowship (both to NMS), NIH training Grant No. T32 HD007151, the US Department of Veterans Affairs, and the McKnight Presidential Cognitive Neuroscience Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos P. Georgopoulos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human subjects/informed consent

The study protocol was approved by the Institutional Review Boards of the Minneapolis VA Medical Center and the University of Minnesota. The study was performed in accordance with the ethical standards outlined in the Declaration of Helsinki. All subjects provided written informed consent prior to participating in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, N.M., Leuthold, A., Sera, M.D. et al. Differential neural activity patterns for spatial relations in humans: a MEG study. Exp Brain Res 234, 429–441 (2016). https://doi.org/10.1007/s00221-015-4467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4467-6

Keywords

Navigation