Skip to main content
Log in

Updating representations of temporal intervals

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Effectively engaging with the world depends on accurate representations of the regularities that make up that world—what we call mental models. The success of any mental model depends on the ability to adapt to changes—to ‘update’ the model. In prior work, we have shown that damage to the right hemisphere of the brain impairs the ability to update mental models across a range of tasks. Given the disparate nature of the tasks we have employed in this prior work (i.e. statistical learning, language acquisition, position priming, perceptual ambiguity, strategic game play), we propose that a cognitive module important for updating mental representations should be generic, in the sense that it is invoked across multiple cognitive and perceptual domains. To date, the majority of our tasks have been visual in nature. Given the ubiquity and import of temporal information in sensory experience, we examined the ability to build and update mental models of time. We had healthy individuals complete a temporal prediction task in which intervals were initially drawn from one temporal range before an unannounced switch to a different range of intervals. Separate groups had the second range of intervals switch to one that contained either longer or shorter intervals than the first range. Both groups showed significant positive correlations between perceptual and prediction accuracy. While each group updated mental models of temporal intervals, those exposed to shorter intervals did so more efficiently. Our results support the notion of generic capacity to update regularities in the environment—in this instance based on temporal information. The task developed here is well suited to investigations in neurological patients and in neuroimaging settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abla D, Okanoya K (2009) Visual statistical learning of shape sequences: an ERP study. Neurosci Res 64:185–190

    Article  PubMed  Google Scholar 

  • Auksztulewicz R, Friston K (2015). Attentional enhancement of auditory mismatch responses: a DCM/MEG study. Cereb Cortex. doi:10.1093/cercor/bhu323

    PubMed  Google Scholar 

  • Basso G, Nichelli P, Frassinetti F, di Pellegrino G (1996) Time perception in a neglected space. NeuroReport 7:2111–2114

    Article  CAS  PubMed  Google Scholar 

  • Beck DM, Rees G, Frith CD, Lavie N (2001) Neural correlates of change detection and change blindness. Nat Neurosci 4:645–650

    Article  CAS  PubMed  Google Scholar 

  • Beck DM, Muggleton N, Walsh V, Lavie N (2006) Right parietal cortex plays a critical role in change blindness. Cereb Cortex 16:712–717

    Article  PubMed  Google Scholar 

  • Boly M, Garrido MI, Gosseries O, Bruno MA, Boveroux P, Schnakers C, Massimini M, Litvak V, Laureys S, Friston K (2011) Preserved feedforward but impaired top-down processes in the vegetative state. Science 332:858–862

    Article  CAS  PubMed  Google Scholar 

  • Bueti D, Behrami B, Walsh V, Rees G (2010) Encoding of temporal probabilities in the human brain. J Neurosci 30:4343–4352

    Article  CAS  PubMed  Google Scholar 

  • Claassen DO, Jones CR, Yu M, Dirnberger G, Malone T, Parkinson M, Giunti P, Kubovy M, Jahanshahi M (2013) Deciphering the impact of cerebellar and basal ganglia dysfunction in accuracy and variability of motor timing. Neuropsychologia 51:267–274

    Article  PubMed  Google Scholar 

  • Coull JT, Davranche K, Nazarian B, Vidal F (2013) Functional anatomy of timing differs for production versus prediction of time intervals. Neuropsychologia 51:309–319

    Article  PubMed  Google Scholar 

  • Cravo AM, Haddad H, Claessens PM, Baldo MV (2013) Bias and learning in temporal binding: intervals between actions and outcomes are compressed by prior bias. Conscious Cogn 22:1174–1180

    Article  PubMed  Google Scholar 

  • Danckert J, Ferber S, Pun C, Broderick C, Striemer C, Rock S, Stewart D (2007) Neglected time: impaired temporal perception of multisecond intervals in unilateral neglect. J Cogn Neurosci 19:1706–1720

    Article  PubMed  Google Scholar 

  • Danckert J, Stöttinger E, Quehl N, Anderson B (2012a) Right hemisphere brain damage impairs strategy updating. Cereb Cortex 22:2745–2760

    Article  PubMed  Google Scholar 

  • Danckert J, Stöttinger E, Anderson B (2012b) Neglect as a disorder of representational updating. In: Spiteri Y, Galea EM (eds) Psychology of neglect. NOVA Science Publishers, New York, pp 1–28

    Google Scholar 

  • Darriba A, Pazo-Álvarez P, Capilla A, Amenedo E (2012) Oscillatory brain activity in the time frequency domain associated to change blindness and change detection awareness. J Cogn Neurosci 24:337–350

    Article  PubMed  Google Scholar 

  • Davidson PR, Wolpert DM (2003) Motor learning and prediction in a variable environment. Curr Opin Neurobiol 13:232–237

    Article  CAS  PubMed  Google Scholar 

  • de Gardelle V, Summerfield C (2011) Robust averaging during perceptual judgment. Proc Natl Acad Sci USA 108:13341–13346

    Article  PubMed Central  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Article  CAS  PubMed  Google Scholar 

  • Driver J, Spence C (1998) Cross-modal links in spatial attention. Philos Trans R Soc Lond B Ser Biol Sci 353:1319–1331

    Article  CAS  Google Scholar 

  • Druker M, Anderson B (2010) Spatial probability AIDS visual stimulus discrimination. Front Hum Neurosci. doi:10.3389/fnhum.2010.00063

    PubMed Central  PubMed  Google Scholar 

  • Filipowicz A, Anderson B, Danckert J (2014) Learning what from where: effects of spatial regularity on nonspatial sequence learning and updating. Q J Exp Psychol 67:1447–1456

    Article  Google Scholar 

  • Fiser J, Aslin RN (2002) Statistical learning of higher-order temporal structure from visual shape sequences. J Exp Psychol Learn Mem Cogn 28:458–467

    Article  PubMed  Google Scholar 

  • Garrido MI, Kilner JM, Kiebel SJ, Friston KJ (2009a) Dynamic causal modelling of the response to frequency deviants. J Neurophysiol 101:2620–2631

    Article  PubMed Central  PubMed  Google Scholar 

  • Garrido MI, Kilner JN, Stephan KE, Friston KJ (2009b) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120:453–463

    Article  PubMed Central  PubMed  Google Scholar 

  • Geng JJ, Vossel S (2013) Re-evaluating the role of the TPJ in attentional control: contextual updating? Neurosci Biobehav Rev 37:2608–2620

    Article  PubMed Central  PubMed  Google Scholar 

  • Green C, Benson C, Kersten D, Schrater P (2010) Alterations in choice behavior by manipulations of world model. Proc Natl Acad Sci 107:16401–16406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths TL, Tenenbaum JB (2006) Optimal predictions in everyday cognition. Psychol Sci 17:767–773

    Article  PubMed  Google Scholar 

  • Holcombe AO (2009) Seeing slow and seeing fast: two limits on perception. Trends Cogn Sci 13:216–221

    Article  PubMed  Google Scholar 

  • Houlsby NM, Huszár F, Ghassemi MM, Orbán G, Wolpert DM, Lengyel M (2013) Cognitive tomography reveals complex, task-independent mental representations. Curr Biol 23:2169–2175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janssen P, Shadlen MN (2005) A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8:234–241

    Article  CAS  PubMed  Google Scholar 

  • Jueptner M, Stephan K, Frith C, Brooks D, Frackowiak R, Passingham R (1997) Anatomy of motor learning. I. Frontal cortex and attention to action. J Neurophysiol 77:1313–1324

    CAS  PubMed  Google Scholar 

  • Koivisto M, Revonsuo A (2003) An ERP study of change detection, change blindness, and visual awareness. Psychophysiology 40:423–429

    Article  PubMed  Google Scholar 

  • Lewis PA, Miall RC (2003) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13:250–255

    Article  CAS  PubMed  Google Scholar 

  • Morrone MC, Cicchini M, Burr DC (2010) Spatial maps for time and motion. Exp Brain Res 206:121–128

    Article  PubMed  Google Scholar 

  • Orbán G, Wolpert DM (2011) Representations of uncertainty in sensorimotor control. Curr Opin Neurobiol 21:629–635

    Article  PubMed  Google Scholar 

  • Pessoa L, Ungerleider LG (2004) Neural correlates of change detection and change blindness in a working memory task. Cereb Cortex 14:511–520

    Article  PubMed  Google Scholar 

  • Pourtois G, De Pretto M, Hauert CA, Vuilleumier P (2006) Time course of brain activity during change blindness and change awareness: performance is predicted by neural events before change onset. J Cogn Neurosci 18:2108–2129

    Article  PubMed  Google Scholar 

  • Proulx MJ, Serences JT (2006) Searching for an oddball: neural correlates of singleton detection mode in parietal cortex. J Neurosci 26:12631–12632

    Article  CAS  PubMed  Google Scholar 

  • Saffran JR, Aslin RN, Newport EL (1996) Statistical learning by 8-month-old infants. Science 274:1926–1928

    Article  CAS  PubMed  Google Scholar 

  • Shadlen MN, Kiani R (2013) Decision making as a window on cognition. Neuron 80:791–806

    Article  CAS  PubMed  Google Scholar 

  • Shaqiri A, Anderson B (2012) Spatial probability cuing and right hemisphere damage. Brain Cogn 80:352–360

    Article  PubMed  Google Scholar 

  • Shaqiri A, Anderson B (2013) Priming and statistical learning in right brain damaged patients. Neuropsychologia 51:2526–2533

    Article  PubMed  Google Scholar 

  • Shaqiri A, Danckert J, Anderson B (in preparation). Impaired auditory perceptual learning following right brain damage

  • Stöttinger E, Filipowicz A, Mirandi E, Danckert J, Anderson B (2014). Statistical and perceptual updating: Correlated impairments in right brain injury. Exp Brain Res 232:1971–1987

    Article  PubMed  Google Scholar 

  • Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to grow a mind: statistics, structure, and abstraction. Science 331:1279–1285

    Article  CAS  PubMed  Google Scholar 

  • Tseng P, Hsu TY, Muggleton NG, Tzeng OJ, Hung DL, Juan CH (2010) Posterior parietal cortex mediates encoding and maintenance processes in change blindness. Neuropsychologia 48:1063–1070

    Article  PubMed  Google Scholar 

  • Turk-Browne NB, Jungé JA, Scholl BJ (2005) The automaticity of visual statistical learning. J Exp Psychol Gen 134:552–564

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lawrence Oprea, Amanda Tkaczyk, and Cecilia Meza for their assistance with data collection and analysis. Both J.D. and B.A. were supported by separate NSERC Discovery Grants and a joint Canadian Institutes of Health Research Operating Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Danckert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danckert, J., Anderson, B. Updating representations of temporal intervals. Exp Brain Res 233, 3517–3526 (2015). https://doi.org/10.1007/s00221-015-4422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4422-6

Keywords

Navigation