Advertisement

Experimental Brain Research

, Volume 233, Issue 7, pp 2239–2248 | Cite as

Structural differences in basal ganglia of elite running versus martial arts athletes: a diffusion tensor imaging study

  • Yu-Kai Chang
  • Jack Han-Chao Tsai
  • Chun-Chih Wang
  • Erik Chihhung Chang
Research Article

Abstract

The aim of this study was to use diffusion tensor imaging (DTI) to characterize and compare microscopic differences in white matter integrity in the basal ganglia between elite professional athletes specializing in running and martial arts. Thirty-three young adults with sport-related skills as elite professional runners (n = 11) or elite professional martial artists (n = 11) were recruited and compared with non-athletic and healthy controls (n = 11). All participants underwent health- and skill-related physical fitness assessments. Fractional anisotropy (FA) and mean diffusivity (MD), the primary indices derived from DTI, were computed for five regions of interest in the bilateral basal ganglia, including the caudate nucleus, putamen, globus pallidus internal segment (GPi), globus pallidus external segment (GPe), and subthalamic nucleus. Results revealed that both athletic groups demonstrated better physical fitness indices compared with their control counterparts, with the running group exhibiting the highest cardiovascular fitness and the martial arts group exhibiting the highest muscular endurance and flexibility. With respect to the basal ganglia, both athletic groups showed significantly lower FA and marginally higher MD values in the GPi compared with the healthy control group. These findings suggest that professional sport or motor skill training is associated with changes in white matter integrity in specific regions of the basal ganglia, although these positive changes did not appear to depend on the type of sport-related motor skill being practiced.

Keywords

DTI Fitness Globus pallidus Putamen Sport mode 

Notes

Acknowledgments

The research was supported, in part, by grants from the Ministry of Science and Technology in Taiwan to Yu-Kai Chang (NSC 101-2628-H-179-002 and NSC 102-2420-H-179-001-MY3) and to Erik Chihhung Chang (NSC 100-2628-H-008-008 and NSC 101-2410-H008-035-MY2).

Conflict of interest

The authors have no conflicts of interest to declare related to this manuscript.

Supplementary material

221_2015_4293_MOESM1_ESM.doc (85 kb)
Supplementary material 1 (DOC 85 kb)

References

  1. American College of Sports Medicine (2013) ACSM’s guidelines for exercise testing and prescription. Lippincott Williams and Wilkins, New YorkGoogle Scholar
  2. Ashby FG, Turner BO, Horvitz JC (2010) Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn Sci 14:208–215. doi: 10.1016/j.tics.2010.02.001 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344PubMedCrossRefGoogle Scholar
  4. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219PubMedCrossRefGoogle Scholar
  5. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system-A technical review. NMR Biomed 15:435–455. doi: 10.1002/nbm.782 PubMedCrossRefGoogle Scholar
  6. Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8:1148–1150. doi: 10.1038/nn1516 PubMedCrossRefGoogle Scholar
  7. Bhagat YA, Beaulieu C (2004) Diffusion anisotropy in subcortical white matter and cortical gray matter: changes with aging and the role of CSF-suppression. J Magn Reson Imaging 20:216–227. doi: 10.1002/Jmri.20102 PubMedCrossRefGoogle Scholar
  8. Chaddock L, Erickson KI, Prakash RS et al (2010) Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev Neurosci 32:249–256. doi: 10.1159/000316648 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chakravarthy VS, Joseph D, Bapi RS (2010) What do the basal ganglia do? A modeling perspective. Biol Cybern 103:237–253. doi: 10.1007/s00422-010-0401-y PubMedCrossRefGoogle Scholar
  10. Chatard JC, Mujika I, Guy C, Lacour JR (1999) Anaemia and iron deficiency in athletes—practical recommendations for treatment. Sports Med 27:229–240. doi: 10.2165/00007256-199927040-00003 PubMedCrossRefGoogle Scholar
  11. Chenevert TL, Brunberg JA, Pipe JG (1990) Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177:401–405PubMedCrossRefGoogle Scholar
  12. Ciccarelli O, Werring DJ, Wheeler-Kingshott CAM, Barker GJ, Parker GJM, Thompson AJ, Miller DH (2001) Investigation of MS normal-appearing brain using diffusion tenser MRI with clinical correlations. Neurology 56:926–933PubMedCrossRefGoogle Scholar
  13. Davids K, Bennett S, Newell K (2006) Movement system variability. Human Kinetics, Champaign, ILGoogle Scholar
  14. Deeny SP, Hillman CH, Janelle CM, Hatfield BD (2003) Cortico-cortical communication and superior performance in skilled marksmen: an EEG coherence analysis. J Sport Exerc Psychol 25:188–204Google Scholar
  15. Di X, Zhu S, Jin H et al (2012) Altered resting brain function and structure in professional badminton players. Brain Connect 2:225–233PubMedCentralPubMedCrossRefGoogle Scholar
  16. Douaud G, Poupon C, Cointepas Y et al (2005) Diffusion tensor imaging (DTI) in Huntington’s disease patients: analyses of fractional anisotropy (FA) maps and apparent diffusion coefficient (ADC) maps. ISMRM workshop on methods for quantitative diffusion MRI of Human Brain Lake Louise Canada, pp 49–49Google Scholar
  17. Driemeyer J, Boyke J, Gaser C, Büchel C, May A (2008) Changes in gray matter induced by learning—revisited. PLoS ONE 3:e2669. doi: 10.1371/journal.pone.0002669 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Ericsson KA (1996) The road to excellence: the acquisition of expert performance in the arts and sciences, sports, and games. Erlbaum, Mahwah, NJGoogle Scholar
  19. Gattellaro G, Minati L, Grisoli M et al (2009) White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. AJNR Am J Neuroradiol 30:1222–1226. doi: 10.3174/ajnr.A1556 PubMedCrossRefGoogle Scholar
  20. Gerfen CR, Bolam JP (2010) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Academic Press, LondonGoogle Scholar
  21. Gong NJ, Wong CS, Chan CC, Leung LM, Chu YC (2014) Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging. Neurobiol Aging 35:2203–2216. doi: 10.1016/j.neurobiolaging.2014.03.011 PubMedCrossRefGoogle Scholar
  22. Haacke EM, Chengb NYC, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25. doi: 10.1016/j.mri.2004.10.001 PubMedCrossRefGoogle Scholar
  23. Han Y, Yang H, Lv YT et al (2009) Gray matter density and white matter integrity in pianists’ brain: a combined structural and diffusion tensor MRI study. Neurosci Lett 459:3–6. doi: 10.1016/j.neulet.2008.07.056 PubMedCrossRefGoogle Scholar
  24. Hänggi J, Koeneke S, Bezzola L, Jäncke L (2010) Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Hum Brain Mapp 31:1196–1206. doi: 10.1002/hbm.20928 PubMedGoogle Scholar
  25. Hannoun S, Durand-Dubief F, Confavreux C et al (2012) Diffusion tensor-MRI evidence for extra-axonal neuronal degeneration in caudate and thalamic nuclei of patients with multiple sclerosis. AJNR Am J Neuroradiol 33:1363–1368. doi: 10.3174/ajnr.A2983 PubMedCrossRefGoogle Scholar
  26. Hasan KM, Sankar A, Halphen C, Kramer LA, Ewing-Cobbs L, Dennis M, Fletcher JM (2008) Quantitative diffusion tensor imaging and intellectual outcomes in spina bifida: laboratory investigation. J Neurosurg Pediatr 2:75–82. doi: 10.3171/PED/2008/2/7/075 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hasan KM, Halphen C, Kamali A, Nelson FM, Wolinsky JS, Narayana PA (2009) Caudate nuclei volume, diffusion tensor metrics, and T(2) relaxation in healthy adults and relapsing-remitting multiple sclerosis patients: implications for understanding gray matter degeneration. J Magn Reson Imaging 29:70–77. doi: 10.1002/jmri.21648 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hasan KM, Walimuni IS, Abid H, Frye RE, Ewing-Cobbs L, Wolinsky JS, Narayana PA (2011) Multimodal quantitative magnetic resonance imaging of thalamic development and aging across the human lifespan: implications to neurodegeneration in multiple sclerosis. J Neurosci 31:16826–16832. doi: 10.1523/jneurosci.4184-11.2011 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Haufler AJ, Spalding TW, Santa Maria DL, Hatfield BD (2000) Neuro-cognitive activity during a self-paced visuospatial task: comparative EEG profiles in marksmen and novice shooters. Biol Psychol 53:131–160. doi: 10.1016/S0301-0511(00)00047-8 PubMedCrossRefGoogle Scholar
  30. Hyde KL, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, Schlaug G (2009) The effects of musical training on structural brain development: a longitudinal study. Ann N Y Acad Sci 1169:182–186. doi: 10.1111/j.1749-6632.2009.04852.x PubMedCrossRefGoogle Scholar
  31. Imfeld A, Oechslin MS, Meyer M, Loenneker T, Jancke L (2009) White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study. Neuroimage 46:600–607. doi: 10.1016/j.neuroimage.2009.02.025 PubMedCrossRefGoogle Scholar
  32. Kaiser V, Janssen GM, van Wersch JW (1989) Effect of training on red blood cell parameters and plasma ferritin: a transverse and a longitudinal approach. Int J Sports Med 10(Suppl 3):S169–S175. doi: 10.1055/s-2007-1024967 PubMedCrossRefGoogle Scholar
  33. Lalo E, Thobois S, Sharott A, Polo G, Mertens P, Pogosyan A, Brown P (2008) Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. J Neurosci 28:3008–3016. doi: 10.1523/JNEUROSCI.5295-07.2008 PubMedCrossRefGoogle Scholar
  34. Le Bihan D, Mangin J, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546. doi: 10.1002/jmri.1076 PubMedCrossRefGoogle Scholar
  35. Lin TW, Chen SJ, Huang TY et al (2011) Different types of exercise induce differential effects on neuronal adaptations and memory performance. Neurobiol Learn Mem 97:140–147. doi: 10.1016/j.nlm.2011.10.006 PubMedCrossRefGoogle Scholar
  36. Lustig C, Shah P, Seidler R, Reuter-Lorenz PA (2009) Aging, training, and the brain: a review and future directions. Neuropsychol Rev 19:504–522. doi: 10.1007/s11065-009-9119-9 PubMedCentralPubMedCrossRefGoogle Scholar
  37. May A (2011) Experience-dependent structural plasticity in the adult human brain. Trends Cogn Sci 15:475–482. doi: 10.1016/j.tics.2011.08.002 PubMedCrossRefGoogle Scholar
  38. Milton JG, Small SS, Solodkin A (2004) On the road to automatic: dynamic aspects in the development of expertise. J Clin Neurophysiol 21:134–143PubMedCrossRefGoogle Scholar
  39. Milton JG, Solodkin A, Hluštík P, Small SL (2007) The mind of expert motor performance is cool and focused. Neuroimage 35:804–813PubMedCrossRefGoogle Scholar
  40. Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593PubMedCrossRefGoogle Scholar
  41. Park IS, Lee KJ, Han JW, Lee NJ, Lee WT, Park KA (2009) Experience-dependent plasticity of cerebellar vermis in basketball players. The Cerebellum 8:334–339. doi: 10.1007/s12311-009-0100-1 PubMedCrossRefGoogle Scholar
  42. Park IS, Lee KJ, Han JW, Lee NJ, Lee WT, Park KA, Rhyu IJ (2011) Basketball training increases striatum volume. Hum Mov Sci 30:56–62. doi: 10.1016/j.humov.2010.09.001 PubMedCrossRefGoogle Scholar
  43. Percheron G, Yelnik J, Francois C (1984) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227:214–227. doi: 10.1002/cne.902270207 PubMedCrossRefGoogle Scholar
  44. Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV (2010) Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging 31:482–493. doi: 10.1016/j.neurobiolaging.2008.04.013 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Prodoehl J, Yu H, Little DM, Abraham I, Vaillancourt DE (2008) Region of interest template for the human basal ganglia: comparing EPI and standardized space approaches. Neuroimage 39:956–965PubMedCrossRefGoogle Scholar
  46. Rulseh AM, Keller J, Tintera J, Kozisek M, Vymazal J (2013) Chasing shadows: what determines DTI metrics in gray matter regions? An in vitro and in vivo study. J Magn Reson Imaging 38:1103–1110. doi: 10.1002/Jmri.24065 PubMedCrossRefGoogle Scholar
  47. Schmidt RA, Wrisberg CA (2008) Motor learning and performance: a situation-based learning approach. Human Kinetics, Champaign, ILGoogle Scholar
  48. Schmithorst VJ, Wilke M (2002) Differences in white matter architecture between musicians and non-musicians: a diffusion tensor imaging study. Neurosci Lett 321:57–60. doi: 10.1016/s0304-3940(02)00054-x PubMedCrossRefGoogle Scholar
  49. Seger CA (2006) The basal ganglia in human learning. Neuroscientist 12:285–290. doi: 10.1177/1073858405285632 PubMedCrossRefGoogle Scholar
  50. Silk TJ, Vance A, Rinehart N, Bradshaw JL, Cunnington R (2009) Structural development of the basal ganglia in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Psychiatry Res 172:220–225. doi: 10.1016/j.pscychresns.2008.07.003 PubMedCrossRefGoogle Scholar
  51. Stocco A, Lebiere C, Anderson JR (2010) Conditional routing of information to the cortex: a model of the basal ganglia’s role in cognitive coordination. Psychol Rev 117:541–574. doi: 10.1037/a0019077 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Uchiyama HT, Saito DN, Tanabe HC et al (2012) Distinction between the literal and intended meanings of sentences: a functional magnetic resonance imaging study of metaphor and sarcasm. Cortex 48:563–583PubMedCrossRefGoogle Scholar
  53. Wang Q, Xu X, Zhang M (2010) Normal aging in the basal ganglia evaluated by eigenvalues of diffusion tensor imaging. Am J Neuroradiol 31:516–520PubMedCrossRefGoogle Scholar
  54. Wechsler D, Corporation P (1997) WAIS-III: administration and scoring manual: wechsler adult intelligence scale. Psychological Corporation, New YorkGoogle Scholar
  55. Wei G, Luo J, Li Y (2009) Brain structure in diving players on MR imaging studied with voxel-based morphometry. Prog Nat Sci 19:1397–1402CrossRefGoogle Scholar
  56. Wishnitzer R, Vorst E, Berrebi A (1983) Bone marrow iron depression in competitive distance runners. Int J Sports Med 4:27–30. doi: 10.1055/s-2008-1026012 PubMedCrossRefGoogle Scholar
  57. Yarrow K, Brown P, Krakauer JW (2009) Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nat Rev Neurosci 10:585–596. doi: 10.1038/nrn2672 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yu-Kai Chang
    • 1
  • Jack Han-Chao Tsai
    • 2
  • Chun-Chih Wang
    • 1
  • Erik Chihhung Chang
    • 2
  1. 1.Graduate Institute of Athletics and Coaching ScienceNational Taiwan Sport UniversityTaoyuan CityTaiwan
  2. 2.Institute of Cognitive NeuroscienceNational Central UniversityTaoyuan CityTaiwan

Personalised recommendations