Advertisement

Experimental Brain Research

, Volume 233, Issue 7, pp 2205–2214 | Cite as

Repeated, high-dose dextromethorphan treatment decreases neurogenesis and results in depression-like behavior in rats

  • Kai Ting Po
  • Andrew Man-Hong Siu
  • Benson Wui-Man LauEmail author
  • Jackie Ngai-Man Chan
  • Kwok-Fai So
  • Chetwyn C. H. Chan
Research Article

Abstract

Abuse of cough mixture is increasingly prevalent worldwide. Clinical studies showed that chronic consumption of cough mixture at high dosages may lead to psychiatric symptoms, especially affective disturbances, with the underlying mechanisms remain elusive. The present study aims at exploring the effect of repeated, high-dose dextromethorphan (DXM, a common active component of cough mixture) treatment on adult hippocampal neurogenesis, which is associated with pathophysiology of mood disturbances. After treatment with a high-dose of DXM (40 mg/kg/day) for 2 weeks, Sprague–Dawley rats showed increased depression-like behavior when compared to the control animals. Neurogenesis in the hippocampus was suppressed by DXM treatment, which was indicated by decreases in number of proliferative cells and doublecortin (an immature neuron marker)-positive new neurons. Furthermore, the dendritic complexity of the immature neurons was suppressed by DXM treatment. These findings suggest that DXM induces depression- and anxiety-like behavior and suppresses neurogenesis in rats. The current experimental paradigm may serve as an animal model for study on affective effect of cough mixture abuse, rehabilitation treatment options for abusers and the related neurological mechanisms.

Keywords

Neurogenesis Dextromethorphan Depression-like behavior Anxiety-like behavior Drug abuse 

Notes

Acknowledgments

The current study is supported by the departmental general research grant, Department of Rehabilitation Science, The Hong Kong Polytechnic University. The authors would like to thank Dr Guo Xia, Mr Ani Lee and Edward Leung for their technical assistance, and Dr. Guo’s comments on the project design.

References

  1. Adell A, Jiménez-Sánchez L, López-Gil X, Romón T (2012) Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophr Bull 38:9–14. doi: 10.1093/schbul/sbr133 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Amaladoss A, O’Brien S (2011) Cough syrup psychosis. CJEM 13:53–56PubMedGoogle Scholar
  3. Arvidsson A, Kokaia Z, Lindvall O (2001) N-methyl-d-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur J Neurosci 14:10–18. doi: 10.1046/j.0953-816x.2001.01611.x PubMedCrossRefGoogle Scholar
  4. Bem JL, Peck R (1992) Dextromethorphan. An overview of safety issues. Drug Saf 7:190–199PubMedCrossRefGoogle Scholar
  5. Boldrini M, Underwood MD, Hen R et al (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34:2376–2389. doi: 10.1038/npp.2009.75 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bursztajn S, Falls WA, Berman SA, Friedman MJ (2007) Cell proliferation in the brains of NMDAR NR1 transgenic mice. Brain Res 1172:10–20PubMedCrossRefGoogle Scholar
  7. Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15:4687–4692PubMedGoogle Scholar
  8. Campbell S, Macqueen G (2004) The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 29:417–426PubMedCentralPubMedGoogle Scholar
  9. Chermat R, Thierry B, Mico JA et al (1986) Adaptation of the tail suspension test to the rat. J Pharmacol 17:348–350PubMedGoogle Scholar
  10. Cooper RJ (2013) Over-the-counter medicine abuse—a review of the literature. J Subst Use 18:82–107. doi: 10.3109/14659891.2011.615002 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Couillard-Despres S, Wuertinger C, Kandasamy M et al (2009) Ageing abolishes the effects of fluoxetine on neurogenesis. Mol Psychiatry 14:856–864. doi: 10.1038/mp.2008.147 PubMedCrossRefGoogle Scholar
  12. Crouch B, Caravati E, Booth J (2004) Trends in child and teen nonprescription drug abuse reported to a regional poison control center. Am J Health Syst Pharm 61:1252–1257PubMedGoogle Scholar
  13. DeCarolis NA, Eisch AJ (2010) Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 58:884–893. doi: 10.1016/j.neuropharm.2009.12.013 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Desai S, Aldea D, Daneels E et al (2006) Chronic addiction to dextromethorphan cough syrup: a case report. J Am Board Fam Med 19:320–323PubMedCrossRefGoogle Scholar
  15. Dickerson DL, Schaepper MA, Peterson MD, Ashworth MD (2008) Coricidin HBP® Abuse. J Addict Dis 27:25–32. doi: 10.1300/J069v27n01_03 PubMedCrossRefGoogle Scholar
  16. Dong C, Rovnaghi CR, Anand KJS (2012) Ketamine alters the neurogenesis of rat cortical neural stem progenitor cells. Crit Care Med 40:2407–2416. doi: 10.1097/CCM.0b013e318253563c PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gould E, McEwen BS, Tanapat P et al (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17:2492–2498PubMedGoogle Scholar
  18. Jedynak P, Kos T, Sandi C et al (2014) Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine. J Psychiatr Res 56:106–111. doi: 10.1016/j.jpsychires.2014.05.009 PubMedCrossRefGoogle Scholar
  19. Krystal JH (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatry 51:199. doi: 10.1001/archpsyc.1994.03950030035004 PubMedCrossRefGoogle Scholar
  20. Lam LC, Lee DT, Shum PP, Chen CN (1996) Cough mixture misuse in Hong Kong—an emerging psychiatric problem? Addiction 91:1375–1378PubMedGoogle Scholar
  21. Lau BW-M, Yau S-Y, Lee TMC et al (2011a) Effect of corticosterone and paroxetine on masculine mating behavior: possible involvement of neurogenesis. J Sex Med 8:1390–1403. doi: 10.1111/j.1743-6109.2010.02081.x PubMedCrossRefGoogle Scholar
  22. Lau BW-M, Yau S-Y, So K-F (2011b) Reproduction: a new venue for studying function of adult neurogenesis? Cell Transplant 20:21–35. doi: 10.3727/096368910X532765 PubMedCrossRefGoogle Scholar
  23. Lau BW-M, Lee JC-D, Li Y et al (2012) Polysaccharides from wolfberry prevents corticosterone-induced inhibition of sexual behavior and increases neurogenesis. PLoS One 7:e33374. doi: 10.1371/journal.pone.0033374 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Lessenger JE, Feinberg SD (2008) Abuse of prescription and over-the-counter medications. J Am Board Fam Med 21:45–54. doi: 10.3122/jabfm.2008.01.070071 PubMedCrossRefGoogle Scholar
  25. Leuner B, Caponiti JM, Gould E (2012) Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus 22:861–868. doi: 10.1002/hipo.20947 PubMedCrossRefGoogle Scholar
  26. Lucassen PJ, Stumpel MW, Wang Q, Aronica E (2010) Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology 58:940–949. doi: 10.1016/j.neuropharm.2010.01.012 PubMedCrossRefGoogle Scholar
  27. Lucassen PJ, Fitzsimons CP, Korosi A, Joels M, Belzung C, Abrous DN (2012) Stressing new neurons into depression? Mol Psychiatry 18(4):396–398. doi: 10.1038/mp.2012.39 CrossRefGoogle Scholar
  28. Mahar I, Bambico FR, Mechawar N, Nobrega JN (2013) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 38:173–192. doi: 10.1016/j.neubiorev.2013.11.009 PubMedCrossRefGoogle Scholar
  29. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110PubMedGoogle Scholar
  30. McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122. doi: 10.1146/annurev.neuro.22.1.105 PubMedCrossRefGoogle Scholar
  31. Mochizuki N, Takagi N, Kurokawa K et al (2007) Effect of NMDA receptor antagonist on proliferation of neurospheres from embryonic brain. Neurosci Lett 417:143–148. doi: 10.1016/j.neulet.2007.02.066 PubMedCrossRefGoogle Scholar
  32. Nacher J, McEwen BS (2006) The role of N-methyl-d-aspartate receptors in neurogenesis. Hippocampus 16:267–270. doi: 10.1002/hipo.20160 PubMedCrossRefGoogle Scholar
  33. Navailles S, Hof PR, Schmauss C (2008) Antidepressant drug-induced stimulation of mouse hippocampal neurogenesis is age-dependent and altered by early life stress. J Comp Neurol 509:372–381. doi: 10.1002/cne.21775 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Oomen CA, Soeters H, Audureau N et al (2011) Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats. Psychopharmacology 214:249–260. doi: 10.1007/s00213-010-1922-8 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Reif A, Fritzen S, Finger M et al (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522. doi: 10.1038/sj.mp.4001791 PubMedCrossRefGoogle Scholar
  36. Reissig CJ, Carter LP, Johnson MW et al (2012) High doses of dextromethorphan, an NMDA antagonist, produce effects similar to classic hallucinogens. Psychopharmacology 223:1–15. doi: 10.1007/s00213-012-2680-6 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ristanović D, Milosević NT, Stulić V (2006) Application of modified Sholl analysis to neuronal dendritic arborization of the cat spinal cord. J Neurosci Methods 158:212–218. doi: 10.1016/j.jneumeth.2006.05.030 PubMedCrossRefGoogle Scholar
  38. Ruan L, Lau BW-M, Wang J et al (2014) Neurogenesis in neurological and psychiatric diseases and brain injury: from bench to bedside. Prog Neurobiol 115:116–137. doi: 10.1016/j.pneurobio.2013.12.006 PubMedCrossRefGoogle Scholar
  39. Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115. doi: 10.1038/nn1969 PubMedCrossRefGoogle Scholar
  40. Shi F, Bailey C, Malick AW, Audus KL (1993) Biotin uptake and transport across bovine brain microvessel endothelial cell monolayers. Pharm Res 10:282–288PubMedCrossRefGoogle Scholar
  41. Snyder JS, Soumier A, Brewer M et al (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458–461. doi: 10.1038/nature10287 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Substance Abuse and Mental Health Services Administration Office of Applied Studies (2008) Misuse of over-the-counter cough and cold medications among persons aged 12 to 25. Rockville, MDGoogle Scholar
  43. Tang AK, Tang WK, Liang HJ et al (2012) Clinical characteristics of cough mixture abusers referred to three substance abuse clinics in Hong Kong: a retrospective study. East Asian Arch Psychiatry 22:154–159PubMedGoogle Scholar
  44. Tung A, Herrera S, Fornal CA, Jacobs BL (2008) The effect of prolonged anesthesia with isoflurane, propofol, dexmedetomidine, or ketamine on neural cell proliferation in the adult rat. Anesth Analg 106:1772–1777. doi: 10.1213/ane.0b013e31816f2004 PubMedCrossRefGoogle Scholar
  45. Uhr M, Namendorf C, Grauer MT et al (2004) P-glycoprotein is a factor in the uptake of dextromethorphan, but not of melperone, into the mouse brain: evidence for an overlap in substrate specificity between P-gp and CYP2D6. J Psychopharmacol 18:509–515. doi: 10.1177/0269881104047278 PubMedCrossRefGoogle Scholar
  46. Wang J-W, David DJ, Monckton JE et al (2008a) Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 28:1374–1384. doi: 10.1523/JNEUROSCI.3632-07.2008 PubMedCrossRefGoogle Scholar
  47. Wang J-W, David DJ, Monckton JE et al (2008b) Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 28:1374–1384. doi: 10.1523/JNEUROSCI.3632-07.2008 PubMedCrossRefGoogle Scholar
  48. Werling LL, Lauterbach EC, Calef U (2007) Dextromethorphan as a potential neuroprotective agent with unique mechanisms of action. Neurologist 13:272–293. doi: 10.1097/NRL.0b013e3180f60bd8 PubMedCrossRefGoogle Scholar
  49. Winkelheide U, Lasarzik I, Kaeppel B et al (2009) Dose-dependent effect of S(+) ketamine on post-ischemic endogenous neurogenesis in rats. Acta Anaesthesiol Scand 53:528–533. doi: 10.1111/j.1399-6576.2009.01905.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kai Ting Po
    • 1
  • Andrew Man-Hong Siu
    • 1
  • Benson Wui-Man Lau
    • 1
    Email author
  • Jackie Ngai-Man Chan
    • 1
  • Kwok-Fai So
    • 2
    • 3
    • 4
  • Chetwyn C. H. Chan
    • 1
  1. 1.ST 507, Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityHong KongChina
  2. 2.The State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongPokfulamHong Kong
  3. 3.Department of OphthalmologyThe University of Hong KongPokfulamHong Kong
  4. 4.GMH Institute of CNS Regeneration, and Guangdong Medical Key Laboratory of Brain Function and DiseasesJinan UniversityGuangzhouChina

Personalised recommendations