Skip to main content

Decreased postural control in adolescents born with extremely low birth weight

Abstract

The survival rates of infants born preterm with extremely low birth weight (ELBW ≤ 1000 g) have gradually improved over the last decades. However, these infants risk to sustain long-term disorders related to poor neurodevelopment. The objective was to determine whether adolescents born with ELBW have decreased postural control and stability adaptation. Twenty-nine ELBW subjects performed posturography with eyes open and closed under unperturbed and perturbed standing by repeated calf vibration. Their results were compared with twenty-one age- and gender-matched controls born after full-term pregnancy. The ELBW group had significantly decreased stability compared with controls in anteroposterior direction, both during the easier quiet stance posturography (p = 0.007) and during balance perturbations (p = 0.007). The ELBW group had similar stability decrease in lateral direction during balance perturbations (p = 0.013). Statistically, the stability decreases were similar with eyes closed and open, but proportionally larger with eyes open in both directions. Both groups manifested significant adaptation (p ≤ 0.023) to the balance perturbations in anteroposterior direction, though this adaptation process could not compensate for the general stability deficits caused by ELBW on postural control. Hence, adolescent survivors of ELBW commonly suffer long-term deficits in postural control, manifested as use of substantially more recorded energy on performing stability regulating high-frequency movements and declined stability with closed and open eyes both in anteroposterior and lateral direction. The determined relationship between premature birth and long-term functional deficits advocates that interventions should be developed to provide preventive care in neonatal care units and later on in life.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abernethy LJ, Klafkowski G, Foulder-Hughes L, Cooke RW (2003) Magnetic resonance imaging and T2 relaxometry of cerebral white matter and hippocampus in children born preterm. Pediatr Res 54:868–874. doi:10.1203/01.PDR.0000091285.84577.4E

    Article  PubMed  Google Scholar 

  • Abernethy LJ, Cooke RW, Foulder-Hughes L (2004) Caudate and hippocampal volumes, intelligence, and motor impairment in 7-year-old children who were born preterm. Pediatr Res 55:884–893. doi:10.1203/01.PDR.0000117843.21534.4901

    Article  PubMed  Google Scholar 

  • Allin M, Matsumoto H, Santhouse AM et al (2001) Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain 124:60–66

    Article  CAS  PubMed  Google Scholar 

  • Assaiante C, Mallau S, Viel S, Jover M, Schmitz C (2005) Development of postural control in healthy children: a functional approach. Neural Plast 12:109–118. doi:10.1155/NP.2005.109 (discussion 263–172)

    Article  PubMed Central  PubMed  Google Scholar 

  • Atkinson J, Braddick O (2007) Visual and visuocognitive development in children born very prematurely. Prog Brain Res 164:123–149. doi:10.1016/S0079-6123(07)64007-2

    Article  PubMed  Google Scholar 

  • Aylward GP (2005) Neurodevelopmental outcomes of infants born prematurely. J Dev Behav Pediatr 26:427–440

    Article  PubMed  Google Scholar 

  • Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312

    CAS  PubMed  Google Scholar 

  • Bennett FC, Scott DT (1997) Long-term perspective on premature infant outcome and contemporary intervention issues. Semin Perinatol 21:190–201

    Article  CAS  PubMed  Google Scholar 

  • Bhutta AT, Anand KJ (2002) Vulnerability of the developing brain. Neuronal mechanisms. Clin Perinatol 29:357–372

    Article  CAS  PubMed  Google Scholar 

  • Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, Hooymans JM, Cornelissen FW (2009) Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain 132:1898–1906. doi:10.1093/brain/awp119

    Article  PubMed Central  PubMed  Google Scholar 

  • Brandt T, Schautzer F, Hamilton DA et al (2005) Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128:2732–2741. doi:10.1093/brain/awh617

    Article  PubMed  Google Scholar 

  • Brodal P (1998) The central nervous system, structure and function. Oxford University Press, Oxford

    Google Scholar 

  • Corna S, Tarantola J, Nardone A, Giordano A, Schieppati M (1999) Standing on a continuously moving platform: is body inertia counteracted or exploited? Exp Brain Res 124:331–341

    Article  CAS  PubMed  Google Scholar 

  • de Graaf-Peters VB, Hadders-Algra M (2006) Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 82:257–266. doi:10.1016/j.earlhumdev.2005.10.013

    Article  PubMed  Google Scholar 

  • de Groot S, Dallmeijer AJ, Bessems PJ, Lamberts ML, van der Woude LH, Janssen TW (2012) Comparison of muscle strength, sprint power and aerobic capacity in adults with and without cerebral palsy. J Rehabil Med 44:932–938. doi:10.2340/16501977-1037

    Article  PubMed  Google Scholar 

  • de Kieviet JF, Piek JP, Aarnoudse-Moens CS, Oosterlaan J (2009) Motor development in very preterm and very low-birth-weight children from birth to adolescence: a meta-analysis. JAMA 302:2235–2242. doi:10.1001/jama.2009.1708

    Article  PubMed  Google Scholar 

  • Eccles JC (1986) Learning in the motor system. Prog Brain Res 64:3–18

    Article  CAS  PubMed  Google Scholar 

  • Eckert GU, Fortes Filho JB, Maia M, Procianoy RS (2012) A predictive score for retinopathy of prematurity in very low birth weight preterm infants. Eye (Lond) 26:400–406. doi:10.1038/eye.2011.334

    Article  CAS  Google Scholar 

  • Eklund G (1973) Further studies of vibration-induced effects on balance. Ups J Med Sci 78:65–72

    CAS  PubMed  Google Scholar 

  • Evensen KA, Vik T, Helbostad J, Indredavik MS, Kulseng S, Brubakk AM (2004) Motor skills in adolescents with low birth weight. Arch Dis Child Fetal Neonatal Ed 89:F451–F455. doi:10.1136/adc.2003.037788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evensen KA, Lindqvist S, Indredavik MS, Skranes J, Brubakk AM, Vik T (2009) Do visual impairments affect risk of motor problems in preterm and term low birth weight adolescents? Eur J Paediatr Neurol 13:47–56. doi:10.1016/j.ejpn.2008.02.009

    Article  PubMed  Google Scholar 

  • Fallang B, Hadders-Algra M (2005) Postural behavior in children born preterm. Neural Plast 12:175–182 (discussion 263–172)

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351:1985–1995. doi:10.1056/NEJMra041996

    Article  CAS  PubMed  Google Scholar 

  • Foulder-Hughes LA, Cooke RW (2003) Motor, cognitive, and behavioural disorders in children born very preterm. Dev Med Child Neurol 45:97–103

    Article  CAS  PubMed  Google Scholar 

  • Fransson PA (2009) Adaptation of human postural control: learning, sensorimotor and analysis aspects. VDM, Saarbrücken

    Google Scholar 

  • Fransson PA, Hafstrom A, Karlberg M, Magnusson M, Tjader A, Johansson R (2003) Postural control adaptation during galvanic vestibular and vibratory proprioceptive stimulation. IEEE Trans Biomed Eng 50:1310–1319

    Article  PubMed  Google Scholar 

  • Fransson PA, Modig F, Patel M, Gomez S, Magnusson M (2010) Oculomotor deficits caused by 0.06 % and 0.10 % blood alcohol concentrations and relationship to subjective perception of drunkenness. Clin Neurophysiol 121:2134–2142. doi:10.1016/j.clinph.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  • Gaetan EM, Moura-Ribeiro MV (2002) Developmental study of early posture control in preterm and fullterm infants. Arq Neuropsiquiatr 60:954–958

    Article  PubMed  Google Scholar 

  • Georgsdottir I, Erlingsdottir G, Hrafnkelsson B, Haraldsson A, Dagbjartsson A (2012) Disabilities and health of extremely low-birthweight teenagers: a population-based study. Acta Paediatr 101:518–523. doi:10.1111/j.1651-2227.2011.02576.x

    Article  PubMed  Google Scholar 

  • Georgsdottir I, Haraldsson A, Dagbjartsson A (2013) Behavior and well-being of extremely low birth weight teenagers in Iceland. Early Hum Dev 89:999–1003. doi:10.1016/j.earlhumdev.2013.08.018

    Article  PubMed  Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PB (1972) The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95:705–748

    Article  CAS  PubMed  Google Scholar 

  • Goyen TA, Lui K, Woods R (1998) Visual-motor, visual-perceptual, and fine motor outcomes in very-low-birthweight children at 5 years. Dev Med Child Neurol 40:76–81

    Article  CAS  PubMed  Google Scholar 

  • Halsey CL, Collin MF, Anderson CL (1996) Extremely low-birth-weight children and their peers: a comparison of school-age outcomes. Arch Pediatr Adolesc Med 150:790–794

    Article  CAS  PubMed  Google Scholar 

  • Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 55:1369–1381

    CAS  PubMed  Google Scholar 

  • Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178. doi:10.1002/(SICI)1096-9861(19971020)387:2<167:AID-CNE1>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  • Johansson R, Magnusson M (1991) Human postural dynamics. Crit Rev Biomed Eng 18:413–437

    CAS  PubMed  Google Scholar 

  • Johansson R, Magnusson M, Akesson M (1988) Identification of human postural dynamics. IEEE Trans Biomed Eng 35:858–869

    Article  CAS  PubMed  Google Scholar 

  • Johansson R, Fransson PA, Magnusson M (2009) Optimal coordination and control of posture and movements. J Physiol Paris 103:159–177. doi:10.1016/j.jphysparis.2009.08.013

    Article  PubMed  Google Scholar 

  • Jonsdottir GM, Georgsdottir I, Haraldsson A, Hardardottir H, Thorkelsson T, Dagbjartsson A (2012) Survival and neurodevelopmental outcome of ELBW children at 5 years of age: comparison of two cohorts born 10 years apart. Acta Paediatr 101:714–718. doi:10.1111/j.1651-2227.2012.02645.x

    Article  PubMed  Google Scholar 

  • Kanold PO (2009) Subplate neurons: crucial regulators of cortical development and plasticity. Front Neuroanat 3:16. doi:10.3389/neuro.05.016.2009

    Article  PubMed Central  PubMed  Google Scholar 

  • Kanold PO, Kara P, Reid RC, Shatz CJ (2003) Role of subplate neurons in functional maturation of visual cortical columns. Science 301:521–525. doi:10.1126/science.1084152301/5632/521

    Article  CAS  PubMed  Google Scholar 

  • Keshner EA, Allum JH, Pfaltz CR (1987) Postural coactivation and adaptation in the sway stabilizing responses of normals and patients with bilateral vestibular deficit. Exp Brain Res 69:77–92

    Article  CAS  PubMed  Google Scholar 

  • Kluenter H, Roedder D, Kribs A, Fricke O, Roth B, Guntinas-Lichius O (2008) Postural control at 7 years of age after preterm birth with very low birth weight. Otol Neurotol 29:1171–1175. doi:10.1097/MAO.0b013e31818a0f5c

    Article  PubMed  Google Scholar 

  • Kovacic P, Somanathan R (2008) Ototoxicity and noise trauma: electron transfer, reactive oxygen species, cell signaling, electrical effects, and protection by antioxidants: practical medical aspects. Med Hypotheses 70:914–923. doi:10.1016/j.mehy.2007.06.045

    Article  CAS  PubMed  Google Scholar 

  • Kristinsdottir EK, Fransson PA, Magnusson M (2001) Changes in postural control in healthy elderly subjects are related to vibration sensation, vision and vestibular asymmetry. Acta Otolaryngol 121:700–706

    Article  CAS  PubMed  Google Scholar 

  • Le TT, Kapoula Z (2008) Role of ocular convergence in the Romberg quotient. Gait Posture 27:493–500. doi:10.1016/j.gaitpost.2007.06.003

    Article  PubMed  Google Scholar 

  • Lockhart DB, Ting LH (2007) Optimal sensorimotor transformations for balance. Nat Neurosci 10:1329–1336. doi:10.1038/nn1986

    Article  CAS  PubMed  Google Scholar 

  • Maalouf EF, Duggan PJ, Rutherford MA et al (1999) Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. J Pediatr 135:351–357

    Article  CAS  PubMed  Google Scholar 

  • Mallard C, Loeliger M, Copolov D, Rees S (2000) Reduced number of neurons in the hippocampus and the cerebellum in the postnatal guinea-pig following intrauterine growth-restriction. Neuroscience 100:327–333

    Article  CAS  PubMed  Google Scholar 

  • Marin Gabriel MA, Pallas Alonso CR, De La Cruz Bertolo J et al (2009) Age of sitting unsupported and independent walking in very low birth weight preterm infants with normal motor development at 2 years. Acta Paediatr 98:1815–1821. doi:10.1111/j.1651-2227.2009.01475.x

    Article  CAS  PubMed  Google Scholar 

  • Modig F, Patel M, Magnusson M, Fransson PA (2012) Study I: effects of 0.06 % and 0.10 % blood alcohol concentration on human postural control. Gait Posture 35:410–418. doi:10.1016/j.gaitpost.2011.10.364

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan MJ, Burns YR, Gray PH, Harvey JM, Mohay H, Rogers YM, Tudehope DI (1996) School performance of ELBW children: a controlled study. Dev Med Child Neurol 38:917–926

    Article  PubMed  Google Scholar 

  • Paneth NS (1995) The problem of low birth weight. Future Child 5:19–34

    Article  CAS  PubMed  Google Scholar 

  • Patel M, Gomez S, Berg S et al (2008) Effects of 24-h and 36-h sleep deprivation on human postural control and adaptation. Exp Brain Res 185:165–173

    Article  CAS  PubMed  Google Scholar 

  • Patel M, Magnusson M, Kristinsdottir E, Fransson PA (2009) The contribution of mechanoreceptive sensation on stability and adaptation in the young and elderly. Eur J Appl Physiol 105:167–173. doi:10.1007/s00421-008-0886-4

    Article  PubMed  Google Scholar 

  • Perlman JM (2003) The genesis of cognitive and behavioral deficits in premature graduates of intensive care. Minerva Pediatr 55:89–101

    CAS  PubMed  Google Scholar 

  • Petersen H, Magnusson M, Johansson R, Akesson M, Fransson PA (1995) Acoustic cues and postural control. Scand J Rehabil Med 27:99–104

    CAS  PubMed  Google Scholar 

  • Peterson BS, Vohr B, Staib LH et al (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284:1939–1947

    Article  CAS  PubMed  Google Scholar 

  • Popov K, Lekhel H, Bronstein A, Gresty M (1996) Postural responses to vibration of neck muscles in patients with unilateral vestibular lesions. Neurosci Lett 214:202–204

    Article  CAS  PubMed  Google Scholar 

  • Powls A, Botting N, Cooke RW, Stephenson G, Marlow N (1997) Visual impairment in very low birthweight children. Arch Dis Child Fetal Neonatal Ed 76:F82–F87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Redfern M, Jennings J, Martin C, Furman J (2001) Attention influences sensory integration for postural control in older adults. Gait Posture 14(3):211–216

    Article  CAS  PubMed  Google Scholar 

  • Riccio GE, Stoffregen TA (1988) Affordances as constraints on the control of stance. Hum Mov Sci 7:265–300

    Article  Google Scholar 

  • Ritchie K, McClure G (1979) Prematurity. Lancet 2:1227–1229

    Article  CAS  PubMed  Google Scholar 

  • Samsom JF, de Groot L (2001) Study of a group of extremely preterm infants (25–27 weeks): how do they function at 1 year of age? J Child Neurol 16:832–837

    Article  CAS  PubMed  Google Scholar 

  • Samsom JF, de Groot L, Bezemer PD, Lafeber HN, Fetter WP (2002) Muscle power development during the first year of life predicts neuromotor behaviour at 7 years in preterm born high-risk infants. Early Hum Dev 68:103–118

    Article  PubMed  Google Scholar 

  • Schmidt B, Asztalos EV, Roberts RS, Robertson CM, Sauve RS, Whitfield MF (2003) Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms. JAMA 289:1124–1129

    Article  PubMed  Google Scholar 

  • Skranes J, Vangberg TR, Kulseng S et al (2007) Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain 130:654–666. doi:10.1093/brain/awm001

    Article  CAS  PubMed  Google Scholar 

  • Sommerfelt K, Ellertsen B, Markestad T (1993) Personality and behaviour in eight-year-old, non-handicapped children with birth weight under 1500 g. Acta Paediatr 82:723–728

    Article  CAS  PubMed  Google Scholar 

  • Taylor HG, Klein N, Minich NM, Hack M (2000) Middle-school-age outcomes in children with very low birthweight. Child Dev 71:1495–1511

    Article  CAS  PubMed  Google Scholar 

  • Tjernstrom F, Fransson PA, Hafstrom A, Magnusson M (2002) Adaptation of postural control to perturbations—a process that initiates long-term motor memory. Gait Posture 15:75–82

    Article  CAS  PubMed  Google Scholar 

  • Tolcos M, Bateman E, O’Dowd R, Markwick R, Vrijsen K, Rehn A, Rees S (2011) Intrauterine growth restriction affects the maturation of myelin. Exp Neurol 232:53–65. doi:10.1016/j.expneurol.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  • van Lunenburg A, van der Pal SM, van Dommelen P, van der Pal-de Bruin KM, Bennebroek Gravenhorst J, Verrips GH (2013) Changes in quality of life into adulthood after very preterm birth and/or very low birth weight in the Netherlands. Health Qual Life Outcomes 11:51. doi:10.1186/1477-7525-11-51

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Petersen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petersen, H., Tulinius, AT., Georgsdóttir, I. et al. Decreased postural control in adolescents born with extremely low birth weight. Exp Brain Res 233, 1651–1662 (2015). https://doi.org/10.1007/s00221-015-4239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4239-3

Keywords

  • Low birth weight
  • Postural control
  • Childhood
  • Adaptation
  • Vision