Skip to main content
Log in

The perception–action dynamics of action competency are altered by both physical and observational training

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Action competency is defined as the ability of an individual to self-evaluate their own performance capabilities. The current experiment demonstrated that physical and observational training with a motor skill alters action competency ratings in a similar manner. Using a pre-test and post-test protocol, the results revealed that action competency is constrained prior to training by the intrinsic dynamics of relative phase (ϕ), with in-phase (ϕ = 0°) and anti-phase (ϕ = 180°) patterns receiving higher competency ratings than other relative phase patterns. After 2 days of training, action competency ratings for two trained relative phase patterns, +60° and +120°, increased following physical practice or observational practice. A transfer test revealed that both physical performance ability and action competency ability transferred to the symmetry partners (−60° and −120°) of the two trained relative phase patterns following physical or observational training. The findings also revealed that relative motion direction acts as categorical information that helps to organize action production and facilitate action competency. The results are interpreted based on the coordination dynamics theory of perception–action coupling, and extend this theory by showing that visual perception, action production, and action competency are all constrained in a consistent manner by the dynamics of the order parameter relative phase. As a whole, the findings revealed that relative motion, relative phase, and possibly relative amplitude information are all distinct sources of information that contribute to the emergence of a kinematic understanding of action in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The 0° in-phase pattern has been described as two components moving in the same relative motion direction throughout a cycle, whereas the 180° anti-phase pattern has been described as two components moving in completely opposite directions at all times throughout a cycle (Wilson et al. 2005). Here, both of these patterns are classified as neutral with regard to relative motion direction because there is no lead or lag of one component over the other during the cycle, a distinction not shared with the other 10 relative phase animations.

References

  • Amazeen PG (2002) Is dynamics the content of a generalized motor program for rhythmic interlimb coordination. J Mot Behav 34:233–251

    Article  PubMed  Google Scholar 

  • Bandura A (1986) Social Foundations of thought and action: a social cognitive theory. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Bertenthal BI, Pinto J (1993) Complementary processes in the perception and production of human movements. In: Smith LB, Thelen E (eds) A dynamic systems approach to development: applications. Bradford Books, Cambridge, pp 209–239

    Google Scholar 

  • Bertenthal BI, Pinto J (1994) Global processing of biological motions. Psychol Sci 5:221–225

    Article  Google Scholar 

  • Bingham GP (2004) A perceptually driven dynamical model of bimanual rhythmic movement (and phase perception). Ecol Psychol 16:45–53

    Article  Google Scholar 

  • Bingham GP, Schmidt RC, Zaal FTJM (1999) Visual perception of the relative phasing of human limb movements. Percept Psychophys 61:246–258

    Article  CAS  PubMed  Google Scholar 

  • Bingham GP, Zaal F, Shull JA, Collins DR (2001) The effect of frequency on the visual perception of relative phase and phase variability of two oscillating objects. Exp Brain Res 136:543–552. doi:10.1007/s002210000610

    Article  CAS  PubMed  Google Scholar 

  • Buchanan JJ (2004) Learning a single limb multi-joint coordination pattern: the impact of a mechanical constraint on the coordination dynamics of learning and transfer. Exp Brain Res 156:39–54

    Article  PubMed  Google Scholar 

  • Buchanan JJ, Dean N (2014) Consistently modeling the same movement strategy is more important than model skill level in observational learning contexts. Acta Psychol 146:19–27

    Article  Google Scholar 

  • Buchanan JJ, Kelso JAS (1993) Posturally induced transitions in rhythmic multijoint limb movements. Exp Brain Res 94:131–142

    Article  CAS  PubMed  Google Scholar 

  • Buchanan JJ, Wright DL (2011) Generalization of action knowledge following observational learning. Acta Psychol 136:167–178

  • Buchanan JJ, Kelso JAS, de Guzman GC (1997) Self-organization of trajectory information I. Experimental evidence. Biol Cybern 76:257–273

    Article  CAS  PubMed  Google Scholar 

  • Buchanan JJ, Ryu YU, Zihlman K, Wright DA (2008) Observational practice of a relative phase pattern but not an amplitude ratio in a multijoint task. Exp Brain Res 191:157–169

    Article  PubMed  Google Scholar 

  • Burke CJ, Tobler PN, Baddeley M, Schultz W (2010) Neural mechanisms of observational learning. Proc Natl Acad Sci USA 107:14431–14436. doi:10.1073/pnas.1003111107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calvo-Merino B, Ehrenberg S, Leung D, Haggard P (2010) Experts see it all: configural effects in action observation. Psychol Res 74:400–406. doi:10.1007/s00426-009-0262-y

    Article  PubMed  Google Scholar 

  • Carroll WR, Bandura A (1982) The role of visual monitoring in observational learning of action patterns: making the unobservable observable. J Mot Behav 14:153–167

    Article  CAS  PubMed  Google Scholar 

  • Carson RG, Riek S (1998) The influence of joint position on the dynamics of perception–action coupling. Exp Brain Res 121:103–114

    Article  CAS  PubMed  Google Scholar 

  • Casile A, Giese MA (2006) Nonvisual motor training influences biological motion perception. Curr Biol 16:69–74. doi:10.1016/j.cub.2005.10.071

    Article  CAS  PubMed  Google Scholar 

  • Castiello U (2003) Understanding other people’s actions: intention and attention. J Exp Psychol Hum Percept Perform 29:416–430. doi:10.1037/0096-1523.29.2.416

    Article  PubMed  Google Scholar 

  • Clark S, Tremblay F, Ste-Marie D (2004) Differential modulation of corticospinal excitability during observation, mental imagery and imitation of hand actions. Neuropsychologia 42:105–112

    Article  PubMed  Google Scholar 

  • Cross ES, Hamilton A, Grafton ST (2006) Building a motor simulation de novo: observation of dance by dancers. Neuroimage 31:1257–1267. doi:10.1016/j.neuroimage.2006.01.033

    Article  PubMed Central  PubMed  Google Scholar 

  • Cross ES, Kraemer DJM, Hamilton AFD, Kelley WM, Grafton ST (2009) Sensitivity of the action observation network to physical and observational learning. Cereb Cortex 19:315–326

    Article  PubMed Central  PubMed  Google Scholar 

  • de Guzman GC, Kelso JAS, Buchanan JJ (1997) Self-organization of trajectory formation II. Theoretical Model. Biol Cybern 76:275–284

    Article  PubMed  Google Scholar 

  • Decety J, Grezes J, Costes N et al (1997) Brain activity during observation of actions—influence of action content and subject’s strategy. Brain 120:1763–1777

    Article  PubMed  Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667

    Article  CAS  PubMed  Google Scholar 

  • Fontaine RJ, Lee TD, Swinnen SP (1997) Learning a new bimanual coordination pattern: reciprocal influences of intrinsic and to-be-learned patterns. Can J Exp Psychol 51:1–9

    Article  CAS  PubMed  Google Scholar 

  • Gibson JJ, Gibson EJ (1955) Perceptual learning—differentiation or enrichment. Psychol Rev 62:32–41

    Article  CAS  PubMed  Google Scholar 

  • Haken H (1983) Synergetics. Springer, Berlin

    Book  Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    Article  CAS  PubMed  Google Scholar 

  • Haken H, Kelso JAS, Fuchs A, Pandya AS (1990) Dynamic pattern-recognition of coordinated biological motion. Neural Netw 3:395–401. doi:10.1016/0893-6080(90)90022-d

    Article  Google Scholar 

  • Haken H, Peper CE, Beek PJ, Daffertshofer A (1996) A model for phase transitions in human hand movements during multifrequency tapping. Phys D 90:179–196

    Article  Google Scholar 

  • Hamilton A, Grafton ST (2007) The motor hierarchy: from kinematics to goals and intentions. In: Haggard P, Rossetti Y, Kawato M (eds) Sensorimotor foundations of higher cognition. Attention and performance XXll. Oxford University Press, Oxford, pp 381–408

  • Hodges NJ, Franks IM (2000) Attention focusing instructions and coordination bias: implications for learning a novel bimanual task. Hum Mov Sci 19:843–867

    Article  Google Scholar 

  • Hodges NJ, Chua R, Franks IM (2003) The role of video in facilitating perception and action of a novel coordination movement. J Mot Behav 35:247–260

    Article  PubMed  Google Scholar 

  • Hommel B, Musseler J, Aschersleben G, Prinz W (2001) The Theory of Event Coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849. doi:10.1017/s0140525x01000103

    Article  CAS  PubMed  Google Scholar 

  • Jirsa VK, Kelso JAS (eds) (2004) Coordination dynamics: issues and trends. Springer, Berlin

    Google Scholar 

  • Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14:201–211

    Article  Google Scholar 

  • Kagerer FA, Summers JJ, Semjen A (2003) Instabilities during antiphase bimanual movements: are ipsilateral pathways involved? Exp Brain Res 151:489–500

    Article  PubMed  Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 15:R1000–R1004

    Google Scholar 

  • Kelso JAS (1994) The informational character of self-organized coordination dynamics. Hum Mov Sci 13:393–413

    Article  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. The MIT Press, Cambridge

    Google Scholar 

  • Kelso JAS, Pandya AS (1991) Dynamic pattern generation and recognition. In: Badler NI, Barsky BA, Zeltzer D (eds) Making them move: mechanics, control, and animation of articulated figures. Morgan Kaufmann, San Mateo, pp 171–190

    Google Scholar 

  • Kelso JAS, Scholz JP, Schoner G (1986) Nonequilibrium phase-transitions in coordinated biological motion: critical fluctuations. Phys Lett A 118:279–284. doi:10.1016/0375-9601(86)90359-2

    Article  Google Scholar 

  • Kelso JAS, Buchanan JJ, Wallace SA (1991) Order parameters for the neural organization of single limb, multijoint movement patterns. Exp Brain Res 85:432–445

    Article  CAS  PubMed  Google Scholar 

  • Kennerley SW, Diedrichsen J, Hazeltine E, Semjen A, Ivry B (2002) Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nat Neurosci 5:376–381

    Article  CAS  PubMed  Google Scholar 

  • Kilner JM, Friston KJ, Frith CD (2007) The mirror-neuron system: a Bayesian perspective. NeuroReport 18:619–623. doi:10.1097/WNR.0b013e3281139ed0

    Article  PubMed  Google Scholar 

  • Kostrubiec V, Tallet J, Zanone PG (2006) How a new behavioral pattern is stabilized with learning determines its persistence and flexibility in memory. Exp Brain Res 170:238–244. doi:10.1007/s00221-005-0208-6

    Article  PubMed  Google Scholar 

  • Kovacs AJ, Buchanan JJ, Shea CH (2009) Bimanual 1:1 with 90° continuous relative phase: difficult or easy! Exp Brain Res 193:129–136. doi:10.1007/s00221-008-1676-2

    Article  PubMed  Google Scholar 

  • Kovacs AJ, Buchanan JJ, Shea CH (2010) Perceptual and attentional influences on continuous 2:1 and 3:2 multi-frequency bimanual coordination. J Exp Psychol Hum Percept Perform 36:936–954

    Article  PubMed  Google Scholar 

  • Lago A, Fernandez-del-Olmo M (2011) Movement observation specifies motor programs activated by the action observed objective. Neurosci Lett 493:102–106. doi:10.1016/j.neulet.2011.02.014

    Article  CAS  PubMed  Google Scholar 

  • Lago-Rodriguez A, Lopez-Alonso V, Fernández-del-Olmo M (2013) Mirror neuron system and observational learning: behavioral and neurophysiological evidence. Behav Brain Res 248:104–113. doi:10.1016/j.bbr.2013.03.033

    Article  PubMed  Google Scholar 

  • Lee TD, Swinnen SP, Verschueren S (1995) Relative phase alterations during bimanual skill acquisition. J Mot Behav 27:263–274

    Article  PubMed  Google Scholar 

  • Liao C-M, Masters RSW (2001) Analogy learning: a means to implicit motor learning. J Sports Sci 19:307–319

    Article  CAS  PubMed  Google Scholar 

  • Maslovat D, Hodges NJ, Krigolson OE, Handy TC (2010) Observational practice benefits are limited to perceptual improvements in the acquisition of a novel coordination skill. Exp Brain Res 204:119–130. doi:10.1007/s00221-010-2302-7

    Article  PubMed  Google Scholar 

  • Maxwell JP, Masters RSW, Eves FF (1999) From novice to no know-how: a longitudinal study of implicit motor learning. J Sports Sci 18:111–120

    Article  Google Scholar 

  • Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26:3642–3645

    Article  CAS  PubMed  Google Scholar 

  • Mechsner F, Knoblich G (2004) Do muscles matter for coordinated action? J Exp Psychol Hum Percept Perform 30:490–503

    Article  PubMed  Google Scholar 

  • Mechsner F, Kerzel D, Knobllch G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  CAS  PubMed  Google Scholar 

  • Moon H, Robson NP, Langari R, Buchanan JJ (2012) Experimental observations on the central nervous system’s governing strategies on the arm reaching with reduced mobility. In: ASME 2012 international mechanical engineering congress and exposition, vol 2: biomedical and biotechnology, Houston, TX, pp 483–492

  • Pinto J, Bertenthal BI (1992) Effects of phase relations on the perception of biomechanical motions. In: Association for research in vision and ophthalmology, vol 33. Investigative ophthalmology and visual science, Sarasota, FL, p 1114

  • Salesse R, Temprado JJ, Swinnen SP (2005) Interaction of neuromuscular, spatial and visual constraints on hand-foot coordination dynamics. Hum Mov Sci 24:66–80. doi:10.1016/j.humov.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  • Schöner G (1989) Learning and recall in a dynamic theory of coordination patterns. Biol Cybern 62:29–54

    Article  Google Scholar 

  • Schöner G, Kelso JAS (1988a) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520

    Article  PubMed  Google Scholar 

  • Schöner G, Kelso JAS (1988b) A synergetic theory of environmentally-specified and learned patterns of movement coordination. 2. component oscillator dynamics. Biol Cybern 58:81–89. doi:10.1007/bf00364154

    Article  PubMed  Google Scholar 

  • Schöner G, Kelso JAS (1988c) A synergetic theory of environmentally-specified and learned patterns of movement coordination. I. Relative phase dynamics. Biol Cybern 58:71–80

    Article  PubMed  Google Scholar 

  • Schöner G, Haken H, Kelso JAS (1986) A stochastic theory of phase transitions in human hand movement. Biol Cybern 53:247–257

    Article  PubMed  Google Scholar 

  • Schöner G, Zanone PG, Kelso JAS (1992) Learning as change of coordination dynamics: theory and experiment. J Mot Behav 24:29–48

    Article  PubMed  Google Scholar 

  • Smethurst CJ, Carson RG (2001) The acquisition of movement skills: practice enhances the dynamic stability of bimanual coordination. Hum Mov Sci 20:499–529. doi:10.1016/s0167-9457(01)00065-3

    Article  CAS  PubMed  Google Scholar 

  • Snapp-Childs W, Wilson AD, Bingham GP (2011) The stability of rhythmic movement coordination depends on relative speed: the Bingham model supported. Exp Brain Res 215:89–100. doi:10.1007/s00221-011-2874-x

    Article  PubMed  Google Scholar 

  • Summers JJ, Davis AS, Byblow WD (2002) The acquisition of bimanual coordination is mediated by anisotropic coupling between the hands. Hum Mov Sci 21:699–721

    Article  PubMed  Google Scholar 

  • Tallet J, Kostrubiec V, Zanone PG (2008) The role of stability in the dynamics of learning, memorizing, and forgetting new coordination patterns. J Mot Behav 40:103–116

    Article  PubMed  Google Scholar 

  • Temprado JJ, Salesse R, Summers JJ (2007) Neuromuscular and spatial constraints on bimanual hand-held pendulum oscillations: dissociation or combination? Hum Mov Sci 26:235–246. doi:10.1016/j.humov.2007.01.012

    Article  CAS  PubMed  Google Scholar 

  • Tuller B, Kelso JAS (1989) Environmentally-specified patterns of movement coordination in normal and split-brain subjects. Exp Brain Res 75:306–316

    Article  CAS  PubMed  Google Scholar 

  • Wenderoth N, Bock O, Krohn R (2002) Learning a new bimanual coordination pattern is influenced by existing attractors. Mot Cont 6:166–182

    Google Scholar 

  • Wilson AD, Collins DR, Bingham GP (2005) Human movement coordination implicates relative direction as the information for relative phase. Exp Brain Res 165:351–361

    Article  PubMed  Google Scholar 

  • Wilson AD, Snapp-Childs W, Bingham GP (2010a) Perceptual learning immediately yields new stable motor coordination. J Exp Psychol Hum Percept Perform 36:1508–1514. doi:10.1037/a0020412

    Article  PubMed  Google Scholar 

  • Wilson AD, Snapp-Childs W, Coats R, Bingham GP (2010b) Learning a coordinated rhythmic movement with task-appropriate coordination feedback. Exp Brain Res 205:513–520. doi:10.1007/s00221-010-2388-y

    Article  PubMed  Google Scholar 

  • Yamanishi J, Kawato M, Suzuki R (1980) 2 Coupled oscillators as a model for the coordinated finger tapping by both hands. Biol Cybern 37:219–225

    Article  CAS  PubMed  Google Scholar 

  • Zaal FTJM, Bingham GP, Schmidt RC (2000) Visual perception of mean relative phase and phase variability. J Exp Psychol Hum Percept Perform 26:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Zanone PG, Kelso JAS (1992) The evolution of behavioral attractors with learning: nonequilibrium phase transitions. J Exp Psychol Hum Percept Perform 18:403–421

    Article  CAS  PubMed  Google Scholar 

  • Zanone PG, Kelso JAS (1997) Coordination dynamics of learning and transfer: collective and component levels. J Exp Psychol Hum Percept Perform 23:1454–1480

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Buchanan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchanan, J.J., Ramos, J. & Robson, N. The perception–action dynamics of action competency are altered by both physical and observational training. Exp Brain Res 233, 1289–1305 (2015). https://doi.org/10.1007/s00221-015-4207-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4207-y

Keywords

Navigation