Skip to main content
Log in

Changes in H-reflex and V-waves following spinal manipulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study investigates whether spinal manipulation leads to neural plastic changes involving cortical drive and the H-reflex pathway. Soleus evoked V-wave, H-reflex, and M-wave recruitment curves and maximum voluntary contraction (MVC) in surface electromyography (SEMG) signals of the plantar flexors were recorded from ten subjects before and after manipulation or control intervention. Dependent measures were compared with 2-way ANOVA and Tukey’s HSD as post hoc test, p was set at 0.05. Spinal manipulation resulted in increased MVC (measured with SEMG) by 59.5 ± 103.4 % (p = 0.03) and force by 16.05 ± 6.16 4 % (p = 0.0002), increased V/M max ratio by 44.97 ± 36.02 % (p = 0.006), and reduced H-reflex threshold (p = 0.018). Following the control intervention, there was a decrease in MVC (measured with SEMG) by 13.31 ± 7.27 % (p = 0.001) and force by 11.35 ± 9.99 % (p = 0.030), decreased V/M max ratio (23.45 ± 17.65 %; p = 0.03) and a decrease in the median frequency of the power spectrum (p = 0.04) of the SEMG during MVC. The H-reflex pathway is involved in the neural plastic changes that occur following spinal manipulation. The improvements in MVC following spinal manipulation are likely attributed to increased descending drive and/or modulation in afferents. Spinal manipulation appears to prevent fatigue developed during maximal contractions. Spinal manipulation appears to alter the net excitability of the low-threshold motor units, increase cortical drive, and prevent fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 92:2309–2318

    Article  PubMed  Google Scholar 

  • Brinkworth RSA, Tuncer M, Tucker KJ, Jaberzadeh S, Türker KS (2007) Standardization of H-reflex analyses. J Neurosci Methods 162:1–7. doi:10.1016/j.jneumeth.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Chen Y, Wang Y, Thompson A, Carp JS, Segal RL, Wolpaw JR (2010) Reflex conditioning: a new strategy for improving motor function after spinal cord injury. Ann N Y Acad Sci 1198:E12–E21

    Article  PubMed Central  PubMed  Google Scholar 

  • Cooperstein R, Haneline M, Young M (2010) Interexaminer reliability of thoracic motion palpation using confidence ratings and continuous analysis. J Chiropr Med 9:99–106

    Article  PubMed Central  PubMed  Google Scholar 

  • Cooperstein R, Young M, Haneline M (2013) Interexaminer reliability of cervical motion palpation using continuous measures and rater confidence levels. J Can Chiropr Assoc 57:156–164

    PubMed Central  PubMed  Google Scholar 

  • Dishman JD, Burke J (2003) Spinal reflex excitability changes after cervical and lumbar spinal manipulation: a comparative study. Spine J 3:204–212

    Article  PubMed  Google Scholar 

  • Duclay J, Martin A (2005) Evoked H-reflex and V-wave responses during maximal isometric, concentric, and eccentric muscle contraction. J Neurophysiol 94:3555–3562

    Article  PubMed  Google Scholar 

  • Ekblom MM (2010) Improvements in dynamic plantar flexor strength after resistance training are associated with increased voluntary activation and V-to-M ratio. J Appl Physiol 109:19–26

    Article  PubMed  Google Scholar 

  • Floman Y, Liram N, Gilai A (1997) Spinal manipulation results in immediate H-reflex changes in patients with unilateral disc herniation. Eur Spine J 6:398–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fryer G, Morris T, Gibbons P (2004) Paraspinal muscles and intervertebral dysfunction: part one. J Manipulative Physiol Ther 27:267–274

    Article  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Psychol Rev 81:1725–1789

    CAS  Google Scholar 

  • Haavik H, Murphy B (2012) The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control. J Electromyogr Kinesiol 22:768–776

    Article  PubMed  Google Scholar 

  • Haavik Taylor H, Murphy B (2007a) Cervical spine manipulation alters sensorimotor integration: a somatosensory evoked potential study. Clin Neurophysiol 118:391–402

    Article  PubMed  Google Scholar 

  • Haavik Taylor H, Murphy B (2007b) Transient modulation of intracortical inhibition following spinal manipulation. J Aust Chiropr Assoc 37:106–116

    Google Scholar 

  • Haavik Taylor H, Murphy B (2008) Altered sensorimotor integration with cervical spine manipulation. J Manipulative Physiol Ther 31:115–126

    Article  Google Scholar 

  • Haavik Taylor H, Murphy B (2010a) Altered central integration of dual somatosensory input following cervical spine manipulation. J Manipulative Physiol Ther 33:178–188

    Article  Google Scholar 

  • Haavik Taylor H, Murphy B (2010b) The effects of spinal manipulation on central integration of dual somatosensory input observed following motor training: a crossover study. J Manipulative Physiol Ther 33:261–272

    Article  PubMed  Google Scholar 

  • Haavik Taylor H, Holt K, Murphy B (2010) Exploring the neuromodulatory effects of the vertebral subluxation and chiropractic care. J Aust Chiropr Assoc 40:37–44

    Google Scholar 

  • Hagberg M (1981) Muscular endurance and surface electromyogram in isometric and dynamic exercise. J Appl Physiol Respir Environ Exerc Physiol 51:1–7

    CAS  PubMed  Google Scholar 

  • Herzog W (1996) Mechanical, physiologic, and neuromuscular considerations of chiropractic treatment. In: Lawrence DJ, Cassidy JD, McGregor M, Meeker WC, Vernon HT (eds) Advances in chiropractic. Mosby-Year Book, New York, pp 269–285

    Google Scholar 

  • Herzog W, Conway PJ, Zhang YT, Gail J, Guimaraes ACS (1995) Reflex responses associated with manipulative treatments on the thoracic spine: a pilot study. J Manipulative Physiol Ther 18:233–234

    CAS  PubMed  Google Scholar 

  • Herzog W, Scheele D, Conway PJ (1999) Electromyographic responses of back and limb muscles associated with spinal manipulative therapy. Spine 24:146–153

    Article  CAS  PubMed  Google Scholar 

  • Hessell BW, Herzog W, Conway PJ, McEwen MC (1990) Experimental measurement of the force exerted during spinal manipulation using the Thompson technique. J Manipulative Physiol Ther 13:448–453

    CAS  PubMed  Google Scholar 

  • Hestboek L, Leboeuf-Yde C (2000) Are chiropractic tests for the lumbo-pelvic spine reliable and valid? A systematic critical literature review. J Manipulative Physiol Ther 23:258–275

    Article  Google Scholar 

  • Hubka MJ, Phelan SP (1994) Interexaminer reliability of palpation for cervical spine tenderness. J Manipulative Physiol Ther 17:591–595

    CAS  PubMed  Google Scholar 

  • Hultborn H, Meunier S, Pierrot-Deseilligny E, Shindo M (1987) Changes in presynaptic inhibition of Ia fibres at the onset of voluntary contraction in man. J Physiol 389:757–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jull G, Bogduk N, Marsland A (1988) The accuracy of manual diagnosis for cervical zygapophysial joint pain syndromes. Med J Aust 148:233–236

    CAS  PubMed  Google Scholar 

  • Kelly DD, Murphy BA, Backhouse DP (2000) Use of a mental rotation reaction-time paradigm to measure the effects of upper cervical adjustments on cortical processing: a pilot study. J Manipulative Physiol Ther 23:246–251

    Article  CAS  PubMed  Google Scholar 

  • Lowery M, Nolan P, O’Malley M (2002) Electromyogram median frequency, spectral compression and muscle fibre conduction velocity during sustained sub-maximal contraction of the brachioradialis muscle. J Electromyogr Kinesiol 12:111–118

    Article  CAS  PubMed  Google Scholar 

  • Misiaszek JE (2003) The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle Nerve 28:144–160

    Article  PubMed  Google Scholar 

  • Murphy B, Dawson N, Slack J (1995) Sacroiliac joint manipulation decreases the H-reflex. Electromyogr Clin Neurophysiol 35:87–94

    CAS  PubMed  Google Scholar 

  • Nordlund MM, Thorstensson A, Cresswell AG (2002) Variations in the soleus H-reflex as a function of activation during controlled lengthening and shortening actions. Brain Res 952:301–307

    Article  CAS  PubMed  Google Scholar 

  • Pensini M, Martin A (2004) Effect of voluntary contraction intensity on the H-reflex and V-wave responses. Neurosci Lett 367:369–374

    Article  CAS  PubMed  Google Scholar 

  • Pickar JG, Wheeler JD (2001) Response of muscle proprioceptors to spinal manipulative-like loads in the anesthetized cat. J Manipulative Physiol Ther 24:2–11

    Article  CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny E, Burke D (2005) The circuitry of the human spinal cord. Its role in motor control and movement disorders. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pierrot-Deseilligny E, Mazevet D (2000) The monosynaptic reflex: a tool to investigate motor control in humans. Interest and limits. Neurophysiol Clin 30:67–80

    Article  CAS  PubMed  Google Scholar 

  • Strender L, Sjoblom A, Sundell K, Ludwig R, Taube A (1997) Interexaminer reliability in physical examination of patients with low back pain. Spine 22:814–820

    Article  CAS  PubMed  Google Scholar 

  • Suter E, McMorland G, Herzog W, Bray R (1999) Decrease in quadriceps inhibition after sacroiliac joint manipulation in patients with anterior knee pain. J Manipulative Physiol Ther 22:149–153

    Article  CAS  PubMed  Google Scholar 

  • Suter E, McMorland G, Herzog G, Bray R (2000) Conservative lower back treatment reduces inhibition in knee-extensor muscles: a randomized controlled trial. J Manipulative Physiol Ther 23:76–80

    Article  CAS  PubMed  Google Scholar 

  • Suter E, McMorland G, Herzog W (2005) short term effects of spinal manipulation on H-reflex amplitude in healthy and symptomatic subjects. J Manipulative Physiol Ther 28:667–672

    Article  PubMed  Google Scholar 

  • Tucker KJ, Tuncer M, Türker KS (2005) A review of the H-reflex and M-wave in the human triceps surae. Hum Mov Sci 24:667–688

    Article  PubMed  Google Scholar 

  • Upton AR, McComas AJ, Sica RE (1971) Potentiation of “late” responses evoked in muscles during effort. J Neurol Neurosurg Psychiatr 34:699–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vila-Chã C, Falla D, Correia MV, Farina D (2012) Changes in H reflex and V-wave following short-term endurance and strength training. J Appl Physiol 112:54–63

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the following organizations for support and funding Australian Spinal Research Foundation, Hamblin Chiropractic Research Fund Trust, New Zealand College of Chiropractic and Koç University. KST is a Fellow of the Turkish Academy of Sciences Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal S. Türker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazi, I.K., Türker, K.S., Flavel, S. et al. Changes in H-reflex and V-waves following spinal manipulation. Exp Brain Res 233, 1165–1173 (2015). https://doi.org/10.1007/s00221-014-4193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4193-5

Keywords

Navigation