Bagce HF, Saleh S, Adamovich SV, Krakauer JW, Tunik E (2013) Corticospinal excitability is enhanced after visuomotor adaptation and depends on learning rather than performance or error. J Neurophysiol 109:1097–1106
PubMed Central
PubMed
Google Scholar
Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107
CAS
PubMed
Google Scholar
Barker RN, Brauer SG, Barry BK, Gill TJ, Carson RG (2012) Training-induced modifications of corticospinal reactivity in severely affected stroke survivors. Exp Brain Res 221:211–221
PubMed
Google Scholar
Barthelemy D, Alain S, Grey MJ, Nielsen JB, Bouyer LJ (2012) Rapid changes in corticospinal excitability during force field adaptation of human walking. Exp Brain Res 217:99–115
CAS
PubMed
Google Scholar
Baud-Bovy G, Prattichizzo D, Rossi S (2008) Contact forces evoked by transcranial magnetic stimulation of the motor cortex in a multi-finger grasp. Brain Res Bull 75:723–736
PubMed
Google Scholar
Bergmann TO, Mölle M, Schmidt MA, Lindner C, Marshall L, Born J, Siebner HR (2012) EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation. J Neurosci 32:243–253
CAS
PubMed
Google Scholar
Bestmann S (2012) Functional modulation of primary motor cortex during action selection. In: Chen R, Rothwell JC (eds) Cortical connectivity. Springer, Berlin, pp 183–206
Google Scholar
Bestmann S, Harrison LM, Blankenburg F, Mars RB, Haggard P, Friston KJ, Rothwell JC (2008) Influence of uncertainty and surprise on human corticospinal excitability during preparation for action. Curr Biol 18:775–780
CAS
PubMed Central
PubMed
Google Scholar
Buch ER, Mars RB, Boorman ED, Rushworth MF (2010) A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming. J Neurosci 30:1395–1401
CAS
PubMed Central
PubMed
Google Scholar
Burke D, Gracies JM, Mazevet D, Meunier S, Pierrot-Deseilligny E (1994) Non-monosynaptic transmission of the cortical command for voluntary movement in man. J Physiol 480:191–202
PubMed Central
PubMed
Google Scholar
Burke D, Hicks R, Stephen J, Woodforth I, Crawford M (1995) Trial-to-trial variability in corticospinal volleys in human subjects. Electeoencephalogr Clin Neurophysiol 97:231–237
CAS
Google Scholar
Butefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V (2003) Remote changes in cortical excitability after stroke. Brain 126:470–481
PubMed
Google Scholar
Cash RF, Benwell NM, Murray K, Mastaglia FL, Thickbroom GW (2009) Neuromodulation by paired-pulse TMS at an I-wave interval facilitates multiple I-waves. Exp Brain Res 193:1–7
CAS
PubMed
Google Scholar
Cash RF, Ziemann U, Thickbroom GW (2011) Inhibitory and disinhibitory effects on I-wave facilitation in motor cortex. J Neurophysiol 105:100–106
CAS
PubMed
Google Scholar
Chen R (2004) Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 154:1–10
PubMed
Google Scholar
Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, Mills K, Rosler KM, Triggs WJ, Ugawa Y, Ziemann U (2008) The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 119:504–532
PubMed
Google Scholar
Cirillo J, Lavender AP, Ridding MC, Semmler JG (2009) Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals. J Physiol 587:5831–5842
CAS
PubMed Central
PubMed
Google Scholar
Cirillo J, Todd G, Semmler JG (2011) Corticomotor excitability and plasticity following complex visuomotor training in young and old adults. Eur J Neurosci 34:1847–1856
PubMed
Google Scholar
Civardi C, Cantello R, Asselman P, Rothwell JC (2001) Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14:1444–1453
CAS
PubMed
Google Scholar
Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123
CAS
PubMed
Google Scholar
Cohen LG, Ziemann U, Chen R, Classen J, Hallett M, Gerloff C, Butefisch C (1998) Studies of neuroplasticity with transcranial magnetic stimulation. J Clin Neurophysiol 15:305–324
CAS
PubMed
Google Scholar
Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26:2260–2268
PubMed
Google Scholar
Day BL, Rothwell JC, Thompson PD, Dick JP, Cowan JM, Berardelli A, Marsden CD (1987) Motor cortex stimulation in intact man. 2. Multiple descending volleys. Brain 110:1191–1209
PubMed
Google Scholar
de Berker AO, Bikson M, Bestmann S (2013) Predicting the behavioral impact of transcranial direct current stimulation: issues and limitations. Front Hum Neurosci 7:613
PubMed Central
PubMed
Google Scholar
Di Lazzaro V, Ziemann U (2013) The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front Neural Circuits 7:18
PubMed Central
PubMed
Google Scholar
Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 109:397–401
PubMed
Google Scholar
Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (1999a) Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp Brain Res 124:520–524
PubMed
Google Scholar
Di Lazzaro V, Rothwell JC, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P (1999b) Intracortical origin of the short latency facilitation produced by pairs of threshold magnetic stimuli applied to human motor cortex. Exp Brain Res 129:494–499
PubMed
Google Scholar
Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC (2000) Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111:794–799
PubMed
Google Scholar
Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Profice P, Tonali P, Rothwell JC (2001) The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Exp Brain Res 138:268–273
PubMed
Google Scholar
Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115:255–266
PubMed
Google Scholar
Di Lazzaro V, Ziemann U, Lemon RN (2008) State of the art: physiology of transcranial motor cortex stimulation. Brain Stimul 1:345–362
PubMed
Google Scholar
Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, Oliviero A, Pilato F (2012) I-wave origin and modulation. Brain Stimul 5:512–525
PubMed
Google Scholar
Dum R, Strick P (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525
CAS
PubMed
Google Scholar
Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77:677–682
CAS
PubMed
Google Scholar
Duque J, Ivry RB (2009) Role of corticospinal suppression during motor preparation. Cereb Cortex 19:2013–2024
PubMed Central
PubMed
Google Scholar
Duque J, Lew D, Mazzocchio R, Olivier E, Ivry RB (2010) Evidence for two concurrent inhibitory mechanisms during response preparation. J Neurosci 30:3793–3802
CAS
PubMed Central
PubMed
Google Scholar
Duque J, Labruna L, Cazares C, Ivry RB (2012) Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J Neurosci 32:806–816
CAS
PubMed Central
PubMed
Google Scholar
Duque J, Labruna L, Cazares C, Ivry RB (2014) Dissociating the influence of response selection and task anticipation on corticospinal suppression during response preparation. Neuropsychologia 65:287–296
PubMed
Google Scholar
Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546
CAS
PubMed Central
PubMed
Google Scholar
Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143:240–248
CAS
PubMed
Google Scholar
Freund P, Rothwell J, Craggs M, Thompson AJ, Bestmann S (2011) Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury. Eur J Neurosci 34:1839–1846
PubMed
Google Scholar
Galea JM, Ruge D, Buijink A, Bestmann S, Rothwell JC (2013) Punishment-induced behavioral and neurophysiological variability reveals dopamine-dependent selection of kinematic movement parameters. J Neurosci 33:3981–3988
CAS
PubMed Central
PubMed
Google Scholar
Gelli F, Del SF, Popa T, Mazzocchio R, Rossi A (2007) Factors influencing the relation between corticospinal output and muscle force during voluntary contractions. Eur J Neurosci 25:3469–3475
CAS
PubMed
Google Scholar
Goetz SM, Luber B, Lisanby SH, Peterchev AV (2014) A novel model incorporating two variability sources for describing motor evoked potentials. Brain Stimul 7:541–552
PubMed
Google Scholar
Groppa S, Schlaak BH, Munchau A, Werner-Petroll N, Dunnweber J, Baumer T, van Nuenen BF, Siebner HR (2011) The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route. Hum Brain Mapp 33:419–430
PubMed
Google Scholar
Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Solé J, Siebner HR (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123:858–882
CAS
PubMed
Google Scholar
Hamada M, Hanajima R, Terao Y, Arai N, Furubayashi T, Inomata-Terada S, Yugeta A, Matsumoto H, Shirota Y, Ugawa Y (2007) Origin of facilitation in repetitive, 1.5 ms interval, paired pulse transcranial magnetic stimulation (rPPS) of the human motor cortex. Clin Neurophysiol 118:1596–1601
PubMed
Google Scholar
Hanajima R, Ugawa Y, Machii K, Mochizuki H, Terao Y, Enomoto H, Furubayashi T, Shiio Y, Uesugi H, Kanazawa I (2001) Interhemispheric facilitation of the hand motor area in humans. J Physiol 531:849–859
CAS
PubMed Central
PubMed
Google Scholar
Hanajima R, Furubayashi T, Iwata NK, Shiio Y, Okabe S, Kanazawa I, Ugawa Y (2003) Further evidence to support different mechanisms underlying intracortical inhibition of the motor cortex. Exp Brain Res 151:427–434
PubMed
Google Scholar
Hasan A, Galea JM, Casula EP, Falkai P, Bestmann S, Rothwell JC (2013) Muscle and timing-specific functional connectivity between the dorsolateral prefrontal cortex and the primary motor cortex. J Cogn Neurosci 25:558–570
PubMed Central
PubMed
Google Scholar
Hasbroucq T, Osman A, Possamai CA, Burle B, Carron S, Depy D, Latour S, Mouret I (1999) Cortico-spinal inhibition reflects time but not event preparation: neural mechanisms of preparation dissociated by transcranial magnetic stimulation. Acta Psychol (Amst) 101:243–266
CAS
Google Scholar
Hiraoka K, Kamata N, Matsugi A, Iwata A (2010) Premovement facilitation of corticospinal excitability before simple and sequential movement. Percept Mot Skills 111:129–140
PubMed
Google Scholar
Jayaram G, Stagg CJ, Esser P, Kischka U, Stinear J, Johansen-Berg H (2012) Relationships between functional and structural corticospinal tract integrity and walking post stroke. Clin Neurophysiol 123:2422–2428
PubMed Central
PubMed
Google Scholar
Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A (1996) The effect of current direction induced by transcranial magnetic stimulation on the corticospinal excitability in human brain. Electroencephalogr Clin Neurophysiol 101:478–482
CAS
PubMed
Google Scholar
Kiers L, Cros D, Chiappa KH, Fang J (1993) Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89:415–423
CAS
PubMed
Google Scholar
Klein-Flugge MC, Bestmann S (2012) Time-dependent changes in human corticospinal excitability reveal value-based competition for action during decision processing. J Neurosci 32:8373–8382
CAS
PubMed Central
PubMed
Google Scholar
Klein-Flugge MC, Nobbs D, Pitcher JB, Bestmann S (2013) Variability of human corticospinal excitability tracks the state of action preparation. J Neurosci 33:5564–5572
CAS
PubMed Central
PubMed
Google Scholar
Koch G, Franca M, Del Olmo MF, Cheeran B, Milton R, Alvarez SM, Rothwell JC (2006) Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci 26:7452–7459
CAS
PubMed
Google Scholar
Koch G, Fernandez DO, Cheeran B, Schippling S, Caltagirone C, Driver J, Rothwell JC (2008) Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space. J Neurosci 28:5944–5953
PubMed Central
PubMed
Google Scholar
Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519
CAS
PubMed Central
PubMed
Google Scholar
Lemon RN (2002) Basic physiology of transcranial magnetic stimulation. In: Pascual-Leone A, Davey NJ, Rothwell J, Wassermann EM, Puri BK (eds) Handbook of transcranial magnetic stimulation. Arnold, London, pp 61–77
Google Scholar
Leocani L, Cohen LG, Wassermann EM, Ikoma K, Hallett M (2000) Human corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms. Brain 123:1161–1173
PubMed
Google Scholar
Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C (2005) Motor strokes: the lesion location determines motor excitability changes. Stroke 36:2648–2653
PubMed
Google Scholar
Liuzzi G, Horniss V, Hoppe J, Heise K, Zimerman M, Gerloff C, Hummel FC (2010) Distinct temporospatial interhemispheric interactions in the human primary and premotor cortex during movement preparation. Cereb Cortex 20:1323–1331
PubMed
Google Scholar
Mars RB, Bestmann S, Rothwell JC, Haggard P (2007) Effects of motor preparation and spatial attention on corticospinal excitability in a delayed-response paradigm. Exp Brain Res 182:125–129
PubMed
Google Scholar
McDonnell MN, Ridding MC (2006) Transient motor evoked potential suppression following a complex sensorimotor task. Clin Neurophysiol 117:1266–1272
CAS
PubMed
Google Scholar
Mills KR, Murray NM, Hess CW (1987) Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications. Neurosurgery 20:164–168
CAS
PubMed
Google Scholar
Muellbacher W, Ziemann U, Boroojerdi B, Hallett M (2000) Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin Neurophysiol 111:1002–1007
CAS
PubMed
Google Scholar
Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M (2001) Role of the human motor cortex in rapid motor learning. Exp Brain Res 136:431–438
CAS
PubMed
Google Scholar
Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400–409
PubMed
Google Scholar
Murray EA, Coulter JD (1981) Organization of corticospinal neurons in the monkey. J Comp Neurol 195:339–365
CAS
PubMed
Google Scholar
Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1997) Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol 498(Pt 3):817–823
CAS
PubMed Central
PubMed
Google Scholar
Neubert FX, Mars RB, Olivier E, Rushworth MF (2011) Modulation of short intra-cortical inhibition during action reprogramming. Exp Brain Res 211:265–276
PubMed
Google Scholar
Ni Z, Gunraj C, Wagle-Shukla A, Udupa K, Mazzella F, Lozano AM, Chen R (2011) Direct demonstration of inhibitory interactions between long interval intracortical inhibition and short interval intracortical inhibition. J Physiol 589:2955–2962
CAS
PubMed Central
PubMed
Google Scholar
Nitsche MA, Paulus W (2011) Transcranial direct current stimulation–update 2011. Restor Neurol Neurosci 29:463–492
PubMed
Google Scholar
Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97:3109–3117
CAS
PubMed
Google Scholar
Oathes DJ, Ray WJ (2006) Depressed mood, index finger force and motor cortex stimulation: a transcranial magnetic stimulation (TMS) study. Biol Psychol 72:271–277
PubMed
Google Scholar
Oliviero A, Leon AM, Holler I, Vila JF, Siebner HR, Della MG, Di Lazzaro V, Alvarez JT (2005) Reduced sensorimotor inhibition in the ipsilesional motor cortex in a patient with chronic stroke of the paramedian thalamus. Clin Neurophysiol 116:2592–2598
CAS
PubMed
Google Scholar
Patton HD, Amassian VE (1954) Single and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17:345–363
CAS
PubMed
Google Scholar
Pearce AJ, Kidgell DJ (2009) Corticomotor excitability during precision motor tasks. J Sci Med Sport 12:280–283
PubMed
Google Scholar
Perez MA, Cohen LG (2009a) Interhemispheric inhibition between primary motor cortices: what have we learned? J Physiol 587:725–726
CAS
PubMed Central
PubMed
Google Scholar
Perez MA, Cohen LG (2009b) Scaling of motor cortical excitability during unimanual force generation. Cortex 45:1065–1071
PubMed
Google Scholar
Perez MA, Cohen LG (2009c) The corticospinal system and transcranial magnetic stimulation in stroke. Top Stroke Rehabil 16:254–269
PubMed
Google Scholar
Porter R, Lemon RN (1995) Corticospinal function and voluntary movement. Clarendon Press, Oxford
Google Scholar
Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, Perez MA, Ragert P, Rothwell JC, Cohen LG (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586:325–351
CAS
PubMed Central
PubMed
Google Scholar
Romaiguere P, Possamai CA, Hasbroucq T (1997) Motor cortex involvement during choice reaction time: a transcranial magnetic stimulation study in man. Brain Res 755:181–192
CAS
PubMed
Google Scholar
Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122
CAS
PubMed
Google Scholar
Rothwell JC, Day BL, Thompson PD, Dick JP, Marsden CD (1987a) Some experiences of techniques for stimulation of the human cerebral motor cortex through the scalp. Neurosurgery 20:156–163
CAS
PubMed
Google Scholar
Rothwell JC, Thompson PD, Day BL, Dick JP, Kachi T, Cowan JM, Marsden CD (1987b) Motor cortex stimulation in intact man. 1. General characteristics of EMG responses in different muscles. Brain 110:1173–1190
PubMed
Google Scholar
Rothwell JC, Gandevia SC, Burke D (1990) Activation of fusimotor neurones by motor cortical stimulation in human subjects. J Physiol 431:743–756
CAS
PubMed Central
PubMed
Google Scholar
Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W (1999) Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 52:97–103
Google Scholar
Rusu CV, Murakami M, Ziemann U, Triesch J (2014) A model of TMS-induced I-waves in motor cortex. Brain Stimul 7:401–414
PubMed
Google Scholar
Schmidt S, Cichy RM, Kraft A, Brocke J, Irlbacher K, Brandt SA (2009) An initial transient-state and reliable measures of corticospinal excitability in TMS studies. Clin Neurophysiol 120:987–993
CAS
PubMed
Google Scholar
Shimazu H, Maier MA, Cerri G, Kirkwood PA, Lemon RN (2004) Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons. J Neurosci 24:1200–1211
CAS
PubMed
Google Scholar
Sinclair C, Hammond GR (2009) Excitatory and inhibitory processes in primary motor cortex during the foreperiod of a warned reaction time task are unrelated to response expectancy. Exp Brain Res 194:103–113
PubMed
Google Scholar
Soto D, Montoro PR, Humphreys GW (2009) Transcranial magnetic stimulation of the primary motor cortex modulates response interference in a flanker task. Neurosci Lett 451:261–265
CAS
PubMed
Google Scholar
Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130:170–180
PubMed
Google Scholar
Swayne OB, Rothwell JC, Ward NS, Greenwood RJ (2008) Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cereb Cortex 18:1909–1922
PubMed Central
PubMed
Google Scholar
Tandonnet C, Garry MI, Summers JJ (2010) Cortical activation during temporal preparation assessed by transcranial magnetic stimulation. Biol Psychol 85:481–486
CAS
PubMed
Google Scholar
Taylor JL (2006) Stimulation at the cervicomedullary junction in human subjects. J Electromyogr Kinesiol 16:215–223
PubMed
Google Scholar
Terao Y, Ugawa Y, Uesaka Y, Hanajima R, Gemba-Shimizu K, Ohki Y, Kanazawa I (1995) Input-output organization in the hand area of the human motor cortex. Electroencephalogr Clin Neurophysiol 97:375–381
CAS
PubMed
Google Scholar
Thickbroom GW (2011) A model of the contribution of late I-waves to alpha-motoneuronal activation: implications for paired-pulse TMS. Brain Stimul 4:77–83
PubMed
Google Scholar
Todd G, Rogasch NC, Flavel SC, Ridding MC (2009) Voluntary movement and repetitive transcranial magnetic stimulation over human motor cortex. J Appl Physiol 106:1593–1603
PubMed
Google Scholar
Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513
CAS
PubMed Central
PubMed
Google Scholar
Uehara K, Higashi T, Tanabe S, Sugawara K (2011) Alterations in human motor cortex during dual motor task by transcranial magnetic stimulation study. Exp Brain Res 208:277–286
PubMed
Google Scholar
Verleger R, Kuniecki M, Möller F, Fritzmannova M, Siebner HR (2009) On how the motor cortices resolve an inter-hemispheric response conflict: an event-related EEG potential-guided TMS study of the flankers task. Eur J Neurosci 30:318–326
PubMed
Google Scholar
Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, Rothwell JC, Frackowiak RS (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129:809–819
PubMed Central
PubMed
Google Scholar
Ward NS, Newton JM, Swayne OB, Lee L, Frackowiak RS, Thompson AJ, Greenwood RJ, Rothwell JC (2007) The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur J Neurosci 25:1865–1873
PubMed Central
PubMed
Google Scholar
Werhahn KJ, Fong JK, Meyer BU, Priori A, Rothwell JC, Day BL, Thompson PD (1994) The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol 93:138–146
CAS
PubMed
Google Scholar
Wong AL, Haith AM, Krakauer JW (2014) Motor planning. Neuroscientist [Epub ahead of print]
Ziemann U (2004) TMS and drugs. Clin Neurophysiol 115:1717–1729
CAS
PubMed
Google Scholar
Ziemann U, Rothwell JC (2000) I-waves in motor cortex. J Clin Neurophysiol 17:397–405
CAS
PubMed
Google Scholar
Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996a) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135
CAS
PubMed
Google Scholar
Ziemann U, Rothwell JC, Ridding MC (1996b) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496:873–881
CAS
PubMed Central
PubMed
Google Scholar