Skip to main content

Advertisement

Log in

Fingolimod affects gene expression profile associated with LPS-induced memory impairment

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Lipopolysaccharide is an endotoxin to induce sickness behavior in several animal models to explore the link between immune activation and cognition. Neuroinflammation playing a pivotal role in disease progress is evidently influenced by sphingosine-1-phosphate. As one of the sphingosine analogs in clinical use for multiple sclerosis, fingolimod (FTY720) was shown to substantially affect gene expression profile in the context of AD in our previous experiments. The present study was designed to evaluate the drug efficacy in the context of the mere inflammatory context leading to memory impairment. FTY720 was repeatedly administered for a few days before or after intracerebral lipopolysaccharide (LPS) injection in rats. Animal’s brains were then assigned to histological as well as multiplex mRNA assay following memory performance test. Both FTY720 pre-treatment and post-treatment were similarly capable of ameliorating LPS-induced memory impairment as assessed by passive avoidance test. Such amending effects may be partly accountable by the concomitant alterations in transcriptional levels of mitogen-activated protein kinases as well as inflammatory genes determined by QuantiGene Plex analysis. These findings confirming FTY720 application benefits suggest its efficacy may not differ significantly while considered either as a preventive or as a therapeutic approach against neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allende ML, Bektas M, Lee BG, Bonifacino E, Kang J, Tuymetova G, Chen W, Saba JD, Proia RL (2011) Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. J Biol Chem 286:7348–7358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465:1084–1088

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Araujo D, Lapchak P, Robitaille Y, Gauthier S, Quirion R (1988) Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J Neurochem 50:1914–1923

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277:21453–21457

    Article  PubMed  CAS  Google Scholar 

  • Chalfant CE, Spiegel S (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 118:4605–4612

    Article  PubMed  CAS  Google Scholar 

  • Ching LK, Mompoint F, Guderian JA, Picone A, Orme IM, Coler RN, Reed SG, Baldwin SL (2011) Transcriptional profiling of TLR-4/7/8-stimulated guinea pig splenocytes and whole blood by bDNA assay. J Immunol Methods 373:54–62

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen JA, Barkhof F, Comi G, Hartung H-P, Khatri BO, Montalban X, Pelletier J, Capra R, Gallo P, Izquierdo G (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. New Engl J Med 362:402–415

    Article  PubMed  CAS  Google Scholar 

  • Corbyn Z (2013) New set of Alzheimer’s trials focus on prevention. Lancet 381:614–615

    Article  PubMed  Google Scholar 

  • Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159

    Article  PubMed  CAS  Google Scholar 

  • Cyster JG (2010) B cell follicles and antigen encounters of the third kind. Nat Immunol 11:989–996

    Article  PubMed  CAS  Google Scholar 

  • Czech B, Pfeilschifter W, Mazaheri-Omrani N, Strobel MA, Kahles T, Neumann-Haefelin T, Rami A, Huwiler A, Pfeilschifter J (2009) The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem Biophys Res Commun 389:251–256

    Article  PubMed  CAS  Google Scholar 

  • Deogracias R, Yazdani M, Dekkers MP, Guy J, Ionescu MCS, Vogt KE, Barde Y-A (2012) Fingolimod, a sphingosine-1 phosphate receptor modulator increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc Natl Acad Sci USA 109:14230–14235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Donahue DA, Dougherty EJ, Meserve LA (2004) Influence of a combination of two tetrachlorobiphenyl congeners (PCB 47; PCB 77) on thyroid status, choline acetyltransferase (ChAT) activity, and short-and long-term memory in 30-day-old Sprague–Dawley rats. Toxicology 203:99–107

    Article  PubMed  CAS  Google Scholar 

  • Eklind S, Hagberg H, Wang X, Sävman K, Leverin A-L, Hedtjärn M, Mallard C (2006) Effect of lipopolysaccharide on global gene expression in the immature rat brain. Pediatr Res 60:161–168

    Article  PubMed  CAS  Google Scholar 

  • El Alwani M, Wu BX, Obeid LM, Hannun YA (2006) Bioactive sphingolipids in the modulation of the inflammatory response. Pharmacol Ther 112:171–183

    Article  PubMed  Google Scholar 

  • Espinosa-Oliva AM, de Pablos RM, Herrera AJ (2013) Intracranial injection of LPS in rat as animal model of neuroinflammation. Microglia 1041:295–305

    Article  Google Scholar 

  • Estrada-Bernal A, Palanichamy K, Chaudhury AR, Van Brocklyn JR (2012) Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for glioblastoma. Neuro-oncology 14:405–415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fibiger HC (1991) Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. Trends Neurosci 14:220–223

    Article  PubMed  CAS  Google Scholar 

  • Finney CA, Hawkes CA, Kain DC, Dhabangi A, Musoke C, Cserti-Gazdewich C, Oravecz T, Liles WC, Kain KC (2011) S1P is associated with protection in human and experimental cerebral malaria. Mol Med 17:7–8

    Article  Google Scholar 

  • Foster CA, Howard LM, Schweitzer A, Persohn E, Hiestand PC, Balatoni B, Reuschel R, Beerli C, Schwartz M, Billich A (2007) Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Expe Ther 323:469–475

    Article  CAS  Google Scholar 

  • Gao F, Liu Y-F, Li X-W, Wang Y, Wei D, Jiang W (2012) Fingolimod (FTY720) inhibits neuroinflammation and attenuates spontaneous convulsions in lithium-pilocarpine induced status epilepticus in rat model. Pharmacol Biochem Behav 103:187–196

    Article  PubMed  CAS  Google Scholar 

  • Garman RH (2011) Histology of the central nervous system. Toxicol Pathol 39:22–35

    Article  PubMed  Google Scholar 

  • Ge PF, Luo TF, Zhang JZ, Chen DW, Luan YX, Fu SL (2008) Ischemic preconditioning induces chaperone hsp70 expression and inhibits protein aggregation in the CA1 neurons of rats. Neurosci Bull 24:288–296

    Article  PubMed  CAS  Google Scholar 

  • Hemmati F, Dargahi L, Nasoohi S, Omidbakhsh R, Mohamed Z, Naidu M, Ahmadiani A (2013) Neurorestorative effect of FTY720 in a rat model of Alzheimer’s disease: comparison with memantine. Behav Brain Res 252:415–421

    Article  PubMed  CAS  Google Scholar 

  • Huang W-C, Nagahashi M, Terracina KP, Takabe K (2013) Emerging role of sphingosine-1-phosphate in Inflammation, cancer, and lymphangiogenesis. Biomolecules 3:408–434

    Article  PubMed Central  Google Scholar 

  • Jenne CN, Enders A, Rivera R, Watson SR, Bankovich AJ, Pereira JP, Xu Y, Roots CM, Beilke JN, Banerjee A (2009) T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J Exp Med 206:2469–2481

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kása P, Rakonczay Z, Gulya K (1997) The cholinergic system in Alzheimer’s disease. Prog Neurobiol 52:511–535

    Article  PubMed  Google Scholar 

  • King DL, Arendash GW, Crawford F, Sterk T, Menendez J, Mullan MJ (1999) Progressive and gender-dependent cognitive impairment in the APP-transgenic mouse model for Alzheimer’s disease. Behav Brain Res 103:145–162

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25:8843–8853

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick RN (1987) 1,2-Diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells. J Biol Chem 262:16759–16762

    PubMed  CAS  Google Scholar 

  • Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT (2008) Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflamm 5:37–51

    Article  Google Scholar 

  • Lee KD, Chow WN, Sato-Bigbee C, Graf MR, Graham RS, Colello RJ, Young HF, Mathern BE (2009) FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. J Neurotrauma 26:2335–2344

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JE, Kim SY, Jeong YM, Yun HY, Baek KJ, Kwon NS, Park KC, Kim DS (2011) The regulatory mechanism of melanogenesis by FTY720, a sphingolipid analogue. Exp Dermatol 20:237–241

    Article  PubMed  CAS  Google Scholar 

  • Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Yao M, Li N, Wang C, Zheng Y, Cao X (2008) CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood 112:4961–4970

    Article  PubMed  CAS  Google Scholar 

  • Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    Article  PubMed  CAS  Google Scholar 

  • Matsuda S, Minowa A, Suzuki S, Koyasu S (1999) Differential activation of c-Jun NH2-terminal kinase and p38 pathways during FTY720-induced apoptosis of T lymphocytes that is suppressed by the extracellular signal-regulated kinase pathway. J Immunol 162:3321–3326

    PubMed  CAS  Google Scholar 

  • Mehan S, Meena H, Sharma D, Sankhla R (2011) JNK: a stress-activated protein kinase therapeutic strategies and involvement in Alzheimer’s and various neurodegenerative abnormalities. J Mol Neurosci 43:376–390

    Article  PubMed  CAS  Google Scholar 

  • Miron VE, Schubart A, Antel JP (2008) Central nervous system-directed effects of FTY720 (fingolimod). J Neurol Sci 274:13–17

    Article  PubMed  CAS  Google Scholar 

  • Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST (2003) Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat 26:233–242

    Article  PubMed  CAS  Google Scholar 

  • Noda H, Takeuchi H, Mizuno T, Suzumura A (2013) Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol 256:13–18

    Article  PubMed  CAS  Google Scholar 

  • Nozaki K, Nishimura M, Hashimoto N (2001) Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol 23:1–19

    Article  PubMed  CAS  Google Scholar 

  • Okazaki T, Bell R, Hannun Y (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells Role in cell differentiation. J Biol Chem 264:19076–19080

    PubMed  CAS  Google Scholar 

  • O’Neill LA (2006) Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov 5:549–563

    Article  PubMed  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  PubMed  CAS  Google Scholar 

  • Pereira C, Schaer DJ, Bachli EB, Kurrer MO, Schoedon G (2008) Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol 28:504–510

    Article  PubMed  CAS  Google Scholar 

  • Rivera J, Proia RL, Olivera A (2008) The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 8:753–763

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sato M, Tanaka N, Hata N, Oda E, Taniguchi T (1998) Involvement of the IRF family transcription factor IRF-3 in virus-induced activation of IFN-β gene. FEBS Lett 425:112–116

    Article  PubMed  CAS  Google Scholar 

  • Sell KM, Crowe SF, Kent S (2001) Lipopolysaccharide induces memory-processing deficits in day-old chicks. Pharmacol Biochem Behav 68:497–502

    Article  PubMed  CAS  Google Scholar 

  • Um MY, Ahn JY, Kim MK, Ha TY (2012) Sesaminol glucosides protect β-amyloid induced apoptotic cell death by regulating redox system in SK-N-SH. Cells Neurochem Res 37:689–699

    Article  CAS  Google Scholar 

  • Vartanian KB, Stenzel-Poore MP (2010) Toll-like receptor tolerance as a mechanism for neuroprotection. Transl Stroke Res 1:252–260

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Viña J, Lloret A (2010) Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-β peptide. J Alzheimers Dis 20:527–533

    Google Scholar 

  • Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, Guo S, Qin T, Alsharif N, Brinkmann V (2011) Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 69:119–129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research is funded by a HIR MoHE grant (J-200005-73849). The authors are very grateful to Prof. Abbas Kebriaeezadeh and Dr. Hamid Rezaei-Far for FTY720.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Dargahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidbakhsh, R., Rajabli, B., Nasoohi, S. et al. Fingolimod affects gene expression profile associated with LPS-induced memory impairment. Exp Brain Res 232, 3687–3696 (2014). https://doi.org/10.1007/s00221-014-4052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4052-4

Keywords

Navigation