Playing beautifully when you have to be fast: spatial and temporal symmetries of movement patterns in skilled piano performance at different tempi

Abstract

Humans are capable of learning a variety of motor skills such as playing the piano. Performance of these skills is subject to multiple constraints, such as musical phrasing or speed requirements, and these constraints vary from one context to another. In order to understand how the brain controls highly skilled movements, we investigated pianists playing musical scales with their left or right hand at various speeds. Pianists showed systematic temporal deviations away from regularity. At slow tempi, pianists slowed down at the beginning and end of the movement (which we call phrasal template). At fast tempi, temporal deviation traces consisted of three peak delays caused by a thumb-under manoeuvre (which we call neuromuscular template). Intermediate tempi were a linear combination trade-off between these two. We introduce and cross-validate a simple four-parameter model that predicted the timing deviation of each individual note across tempi (R 2 = 0.70). The model can be fitted on the data of individual pianists, providing a novel quantification of expert performance. The present study shows that the motor system can generate complex movements through a dynamic combination of simple movement templates. This provides insight into how the motor system flexibly adapts to varying contextual constraints.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Altenmüller E, Jabusch H-C (2009) Focal hand dystonia in musicians: phenomenology, etiology, and psychological trigger factors. J Hand Ther 22:144–154. doi:10.1016/j.jht.2008.11.007

    PubMed  Article  Google Scholar 

  2. Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421. doi:10.1152/jn.00901.2001

    PubMed  Article  Google Scholar 

  3. Bakeman R (2005) Recommended effect size statistics for repeated measures designs. Behav Res Methods 37:379–384

    PubMed  Article  Google Scholar 

  4. Bernshteĭn NA (1967) The co-ordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  5. Bhatara A, Tirovolas AK, Duan LM et al (2011) Perception of emotional expression in musical performance. J Exp Psychol Hum Percept Perform 921–934. doi:10.1037/a0021922

  6. Clarke EF (1982) Timing in the performance of Erik Satie’s “Vexations”. Acta Psychol (Amst) 50:1–19. doi:10.1016/0001-6918(82)90047-6

    Article  Google Scholar 

  7. D’ Avella A, Bizzi E (2005) Shared and specific muscle synergies in natural motor behaviors. Proc Natl Acad Sci 102:3076–3081. doi:10.1073/pnas.0500199102

    Article  Google Scholar 

  8. D’ Avella A, Portone A, Fernandez L, Lacquaniti F (2006) Control of fast-reaching movements by muscle synergy combinations. J Neurosci 26:7791–7810. doi:10.1523/JNEUROSCI.0830-06.2006

    Article  Google Scholar 

  9. Dalla Bella S, Peretz I, Rousseau L, Gosselin N (2001) A developmental study of the affective value of tempo and mode in music. Cognition 80:B1–B10

    PubMed  Article  CAS  Google Scholar 

  10. Desain P, Honing H (1994) Does expressive timing in music performance scale proportionally with tempo? Psychol Res 56:285–292. doi:10.1007/BF00419658

    Article  Google Scholar 

  11. Engel KC, Flanders M, Soechting JF (1997) Anticipatory and sequential motor control in piano playing. Exp Brain Res 113:189–199

    PubMed  Article  CAS  Google Scholar 

  12. Friberg A, Sundberg J (1999) Does music performance allude to locomotion? A model of final ritardandi derived from measurements of stopping runners. J Acoust Soc Am 105:1469–1484. doi:10.1121/1.426687

    Article  Google Scholar 

  13. Friberg A, Bresin R, Sundberg J (2006) Overview of the KTH rule system for musical performance. Adv Cogn Psychol 2:145–161

    Article  Google Scholar 

  14. Furuya S, Soechting JF (2010) Role of auditory feedback in the control of successive keystrokes during piano playing. Exp Brain Res 204:223–237. doi:10.1007/s00221-010-2307-2

    PubMed  Article  PubMed Central  Google Scholar 

  15. Furuya S, Flanders M, Soechting JF (2011a) Hand kinematics of piano playing. J Neurophysiol 106:2849–2864. doi:10.1152/jn.00378.2011

    PubMed  Article  PubMed Central  Google Scholar 

  16. Furuya S, Goda T, Katayose H et al (2011b) Distinct inter-joint coordination during fast alternate keystrokes in pianists with superior skill. Front Hum Neurosci 5:50. doi:10.3389/fnhum.2011.00050

    PubMed  Article  PubMed Central  Google Scholar 

  17. Furuya S, Aoki T, Nakahara H, Kinoshita H (2012) Individual differences in the biomechanical effect of loudness and tempo on upper-limb movements during repetitive piano keystrokes. Hum Mov Sci 31:26–39. doi:10.1016/j.humov.2011.01.002

    PubMed  Article  Google Scholar 

  18. Gentner R, Classen J (2006) Modular organization of finger movements by the human central nervous system. Neuron 52:731–742. doi:10.1016/j.neuron.2006.09.038

    PubMed  Article  CAS  Google Scholar 

  19. Gentner R, Gorges S, Weise D et al (2010) Encoding of motor skill in the corticomuscular system of musicians. Curr Biol 20:1869–1874. doi:10.1016/j.cub.2010.09.045

    PubMed  Article  CAS  Google Scholar 

  20. Goebl W, Palmer C (2013) Temporal control and hand movement efficiency in skilled music performance. PLoS One 8:e50901. doi:10.1371/journal.pone.0050901

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  21. Goldstein AG (1957) Judgments of visual velocity as a function of length of observation time. J Exp Psychol 54:457–461

    PubMed  Article  CAS  Google Scholar 

  22. Granert O, Peller M, Jabusch H-C et al (2011) Sensorimotor skills and focal dystonia are linked to putaminal grey-matter volume in pianists. J Neurol Neurosurg Psychiatry 1225–1231. doi:10.1136/jnnp.2011.245811

  23. Hart CB, Giszter SF (2004) Modular premotor drives and unit bursts as primitives for frog motor behaviors. J Neurosci 24:5269–5282. doi:10.1523/jneurosci.5626-03.2004

    PubMed  Article  CAS  Google Scholar 

  24. Heuer H (2007) Control of the dominant and nondominant hand: exploitation and taming of nonmuscular forces. Exp Brain Res 178:363–373. doi:10.1007/s00221-006-0747-5

    PubMed  Article  Google Scholar 

  25. Hochberg FH, Leffert RD, Heller MD, Merriman L (1983) Hand difficulties among musicians. JAMA J Am Med Assoc 249:1869–1872

    Article  CAS  Google Scholar 

  26. Hollerbach MJ, Flash T (1982) Dynamic interactions between limb segments during planar arm movement. Biol Cybern 44:67–77

    PubMed  Article  CAS  Google Scholar 

  27. Honing H (2003) The final ritard: on music, emotion, and kinematic models. Comput Music J 27:66–72

    Article  Google Scholar 

  28. Honing H (2006) Evidence for tempo-specific timing in music using a web-based experimental setup. J Exp Psychol Hum Percept Perform 32:780–786. doi:10.1037/0096-1523.32.3.780

    PubMed  Article  Google Scholar 

  29. Honing H (2007) Is expressive timing relational invariant under tempo transformation? Psychol Music 35:276–285. doi:10.1177/0305735607070380

    Article  Google Scholar 

  30. Hore J, O’Brien M, Watts S (2005) Control of joint rotations in overarm throws of different speeds made by dominant and nondominant arms. J Neurophysiol 94:3975–3986. doi:10.1152/jn.00327.2005

    PubMed  Article  Google Scholar 

  31. Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282. doi:10.1113/jphysiol.2003.057174

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  32. Jabusch H-C, Vauth H, Altenmüller E (2004) Quantification of focal dystonia in pianists using scale analysis. Mov Disord 19:171–180. doi:10.1002/mds.10671

    PubMed  Article  Google Scholar 

  33. Jabusch H-C, Alpers H, Kopiez R et al (2009) The influence of practice on the development of motor skills in pianists: a longitudinal study in a selected motor task. Hum Mov Sci 28:74–84. doi:10.1016/j.humov.2008.08.001

    PubMed  Article  Google Scholar 

  34. Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    PubMed  Article  CAS  Google Scholar 

  35. Khalfa S, Roy M, Rainville P et al (2008) Role of tempo entrainment in psychophysiological differentiation of happy and sad music? Int J Psychophysiol 68:17–26. doi:10.1016/j.ijpsycho.2007.12.001

    PubMed  Article  Google Scholar 

  36. MacKenzie CL, Van Eerd DL (1990) Rhythmic precision in the performance of piano scales: motor psychophysics and motor programming. Atten Perform 13:375–408

    Google Scholar 

  37. Osu R, Franklin DW, Kato H et al (2002) Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. J Neurophysiol 88:991–1004

    PubMed  Google Scholar 

  38. Palmer C, Krumhansl CL (1987) Independent temporal and pitch structures in determination of musical phrases. J Exp Psychol Hum Percept Perform 13:116–126. doi:10.1037/0096-1523.13.1.116

    PubMed  Article  CAS  Google Scholar 

  39. Penel A, Drake C (2004) Timing variations in music performance: musical communication, perceptual compensation, and/or motor control? Percept Psychophys 66:545–562

    PubMed  Article  Google Scholar 

  40. Repp BH (1990) Patterns of expressive timing in performances of a Beethoven minuet by nineteen famous pianists. J Acoust Soc Am 88:622–641

    PubMed  Article  CAS  Google Scholar 

  41. Repp BH (1994) Relational invariance of expressive microstructure across global tempo changes in music performance: an exploratory study. Psychol Res 56:269–284

    PubMed  Article  CAS  Google Scholar 

  42. Rosenkranz K, Butler K, Williamon A, Rothwell JC (2009) Regaining motor control in musician’s dystonia by restoring sensorimotor organization. J Neurosci 29:14627–14636. doi:10.1523/JNEUROSCI.2094-09.2009

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  43. Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258. doi:10.1007/s00221-001-0913-8

    PubMed  Article  Google Scholar 

  44. Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675

    PubMed  CAS  Google Scholar 

  45. Santello M, Flanders M, Soechting JF (2002) Patterns of hand motion during grasping and the influence of sensory guidance. J Neurosci 22:1426–1435

    PubMed  CAS  Google Scholar 

  46. Shapiro DC, Zernicke RF, Gregor RJ (1981) Evidence for generalized motor programs using gait pattern analysis. J Mot Behav 13:33–47

    PubMed  Article  CAS  Google Scholar 

  47. Summers JJ (1975) The role of timing in motor program representation. J Mot Behav 7:229–241

    PubMed  Article  CAS  Google Scholar 

  48. Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747. doi:10.1038/35037588

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  49. Tse PU, Intriligator J, Rivest J, Cavanagh P (2004) Attention and the subjective expansion of time. Atten Percept Psychophys 66:1171–1189

    Article  Google Scholar 

  50. Turk AE, Shattuck-Hufnagel S (2007) Multiple targets of phrase-final lengthening in American English words. J Phon 35:445–472. doi:10.1016/j.wocn.2006.12.001

    Article  Google Scholar 

  51. Van Vugt FT, Jabusch H-C, Altenmüller E (2012) Fingers phrase music differently: trial-to-trial variability in piano scale playing and auditory perception reveal motor chunking. Front Audit Cogn Neurosci 3:495. doi:10.3389/fpsyg.2012.00495

    Google Scholar 

  52. Van Vugt FT, Altenmüller E, Jabusch H-C (2013a) The influence of chronotype on making music: circadian fluctuations in pianists’ fine motor skills. Front Hum Neurosci 7:347. doi:10.3389/fnhum.2013.00347

    PubMed  PubMed Central  Google Scholar 

  53. Van Vugt FT, Jabusch H-C, Altenmüller E (2013b) Individuality that is unheard of: systematic temporal deviations in scale playing leave an inaudible pianistic fingerprint. Front Cogn Sci 134. doi:10.3389/fpsyg.2013.00134

  54. Van Vugt FT, Boullet L, Jabusch H-C, Altenmüller E (2014) Musician’s dystonia in pianists: long-term evaluation of retraining and other therapies. Parkinsonism Relat Disord 20:8–12. doi:10.1016/j.parkreldis.2013.08.009

    PubMed  Article  Google Scholar 

  55. Wagner C (1971) The influence of the tempo of playing on the rhythmic structure studied at pianist’s playing scales. In: Vredenbregt J, Wartenweiler J (eds) Med Sport. Karger, Basel, pp 129–132

    Google Scholar 

  56. Windsor L, Aarts R, Desain P et al (2001) The timing of grace notes in skilled musical performance at different tempi: a preliminary case study. Psychol Music 29:149–169. doi:10.1177/0305735601292005

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the EBRAMUS (European Brain and Music) Initial Training Network Grant (ITN MC FP7, GA 238157).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Floris T. van Vugt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 240 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Vugt, F.T., Furuya, S., Vauth, H. et al. Playing beautifully when you have to be fast: spatial and temporal symmetries of movement patterns in skilled piano performance at different tempi. Exp Brain Res 232, 3555–3567 (2014). https://doi.org/10.1007/s00221-014-4036-4

Download citation

Keywords

  • Generalised motor programmes
  • Timing
  • Motor skill
  • Expert musicians
  • Scale playing
  • Movement effectors