Advertisement

Experimental Brain Research

, Volume 232, Issue 6, pp 1677–1688 | Cite as

The contribution of cognitive, kinematic, and dynamic factors to anticipatory grasp selection

  • Oliver HerbortEmail author
  • Martin V. Butz
  • Wilfried Kunde
Research Article

Abstract

Object-directed grasping movements are usually adjusted in anticipation of the direction and extent of a subsequent object rotation. Such anticipatory grasp selections have been mostly explained in terms of the kinematics of the arm movement. However, object rotations of different directions and extents also differ in their dynamics and in how the tasks are represented. Here, we examined how the dynamics, the kinematics, and the cognitive representation of an object manipulation affect anticipatory grasp selections. We asked participants to grasp an object and rotate it by different angles and in different directions. To examine the influence of dynamic factors, we varied the object’s weight. To examine the influence of the cognitive task representation, we instructed identical object rotations as either toward-top or away-from-top rotations. While instructed object rotation and cognitive task representation did affect grasp selection over the entire course of the experiment, a rather small effect of object weight only appeared late in the experiment. We suggest that grasp selections are determined on different levels. The representation of the kinematics of the object movement determines grasp selection on a trial-by-trial basis. The effect of object weight affects grasp selection by a slower adaptation process. This result implies that even simple motor acts, such as grasping, can only be understood when cognitive factors, such as the task representation, are taken into account.

Keywords

Anticipatory actions Grasping End-state comfort effect Dynamics Kinematics Task representation 

Notes

Acknowledgments

This work was funded by Grant HE 6710/2-1 of the German Research Foundation (DFG). We thank Michael Herbort, Albrecht Sebald, and Georg Schüssler for technical support and Wladimir Kirsch for helpful discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

221_2014_3849_MOESM1_ESM.pdf (328 kb)
Supplementary material 1 (PDF 329 kb)

References

  1. Aflalo TN, Graziano MSA (2007) Relationship between unconstrained arm movements and single-neuron firing in the macaque motor cortex. J Neurosci 27(11):2760–2780. doi: 10.1523/JNEUROSCI.3147-06.2007 PubMedCrossRefGoogle Scholar
  2. Bock O, Steinberg F (2012) Age-related deficits of manual grasping in a laboratory versus in an everyday-like setting. Ageing Res 4(e7):48–52. doi: 10.4081/ar.2012.e7 Google Scholar
  3. Claxton LJ, Keen R, McCarty ME (2003) Evidence of motor planning in infant reaching behavior. Psychol Sci 14(4):354–356. doi: 10.1111/1467-9280.24421 PubMedCrossRefGoogle Scholar
  4. Collins T, Schicke T, Röder B (2008) Action goal selection and motor planning can be dissociated by tool use. Cognition 109(3):363–371. doi: 10.1016/j.cognition.2008.10.001 PubMedCrossRefGoogle Scholar
  5. Coren S (1993) The lateral preference inventory for measurement of handedness, footedness, eyedness, and earedness: norms for young adults. Bull Psychon Soc 31(1):1–3CrossRefGoogle Scholar
  6. Crajé C, Lukos J, Ansuini C, Gordon A, Santello M (2011) The effects of task and content on digit placement on a bottle. Exp Brain Res 212(1):119–124. doi: 10.1007/s00221-011-2704-1 PubMedCrossRefGoogle Scholar
  7. Eder AB, Rothermund K (2008) When do motor behaviors (mis)match affective stimuli? An evaluative coding view of approach and avoidance reactions. J Exp Psychol Gen 137:262–281PubMedCrossRefGoogle Scholar
  8. Gandolfo F, Mussa-Ivaldi FA, Bizzi E (1996) Motor learning by field approximation. Proc Natl Acad Sci USA 93:3843–3846PubMedCentralPubMedCrossRefGoogle Scholar
  9. Herbort O (2012) Where to grasp a tool? Task-dependent adjustments of tool transformations by tool users. Zeitschrift für Psychol 220(1):37–43. doi: 10.1027/2151-2604/a000089 CrossRefGoogle Scholar
  10. Herbort O (2013) Optimal versus heuristic planning of object manipulations: a review and a computational model of the continuous end-state comfort effect. New Ideas Psychol 31:291–301. doi: 10.1016/j.newideapsych.2013.01.003 CrossRefGoogle Scholar
  11. Herbort O, Butz MV (2010) Planning and control of hand orientation in grasping movements. Exp Brain Res 202(4):867–878. doi: 10.1007/s00221-010-2191-9 PubMedCrossRefGoogle Scholar
  12. Herbort O, Butz MV (2011) Habitual and goal-directed factors in (everyday) object handling. Exp Brain Res 213(4):371–382. doi: 10.1007/s00221-011-2787-8 PubMedCrossRefGoogle Scholar
  13. Herbort O, Butz MV (2012) The continuous end-state comfort effect: weighted integration of multiple biases. Psychol Res 76(3):345–363. doi: 10.1007/s00426-011-0334-7 PubMedCrossRefGoogle Scholar
  14. Hughes CML, Franz EA (2008) Goal-related planning constraints in bimanual grasping and placing of objects. Exp Brain Res 188(4):541–550. doi: 10.1007/s00221-008-1387-8 PubMedCrossRefGoogle Scholar
  15. Hughes CML, Seegelke C, Reißig P, Schütz C (2012) Effects of stimulus cueing on bimanual grasp posture planning. Exp Brain Res 219(3):391–401. doi: 10.1007/s00221-012-3100-1 PubMedCrossRefGoogle Scholar
  16. Johnson SH (2000) Thinking ahead: the case for motor imagery in prospective judgements of prehension. Cognition 74(1):33–70. doi: 10.1016/S0010-0277(99)00063-3 PubMedCrossRefGoogle Scholar
  17. Krakauer JW, Ghilardi M-F, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2(11):1026–1031. doi: 10.1038/14826 PubMedCrossRefGoogle Scholar
  18. Kunde W, Weigelt M (2005) Goal congruency in bimanual object manipulation. J Exp Psychol 31(1):145–156Google Scholar
  19. Lukos JR, Ansuini C, Santello M (2008) Anticipatory control of grasping: independence of sensorimotor memories for kinematics and kinetics. J Neurosci 28(48):12765–12774. doi: 10.1523/JNEUROSCI.4335-08.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Neumann R, Lozo L, Kunde W (2014) Not all behaviors are controlled in the same way: Different mechanisms underlie manual and facial approach and avoidance responses. J Exp Psychol Gen 143(1):1–8. doi: 10.1037/a0032259
  21. O’Sullivan LW, Gallwey TJ (2002) Upper-limb surface electro-myography at maximum supination and pronation torques: the effect of elbow and forearm angle. J Electromyogr Kinesiol 12(4):275–285. doi: 10.1016/S1050-6411(02)00014-7 PubMedCrossRefGoogle Scholar
  22. Rosenbaum DA (1980) Human movement initiation: specification of arm, direction, and extent. J Exp Psychol Gen 109(4):444–474. doi: 10.1037/0096-3445.109.4.444 PubMedCrossRefGoogle Scholar
  23. Rosenbaum DA, Marchak F, Barnes HJ, Vaughan J, Slotta JD, Jorgensen MJ (1990) Constraints for action selection: overhand versus underhand grips. In: Jeannerod M (ed) Attention and performance, vol XIII. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 321–345Google Scholar
  24. Rosenbaum DA, Vaughan J, Barnes HJ, Jorgensen MJ (1992) Time course of movement planning: selection of handgrips for object manipulation. J Exp Psychol 18(5):1058–1073Google Scholar
  25. Rosenbaum DA, van Heugten CM, Caldwell GE (1996) From cognition to biomechanics and back: the end-state comfort effect and the middle-is-faster effect. Acta Psychol 94:59–85CrossRefGoogle Scholar
  26. Rosenbaum DA, Meulenbroek RGJ, Vaughan J, Jansen C (2001) Posture-based motion planning: applications to grasping. Psychol Rev 108(4):709–734PubMedCrossRefGoogle Scholar
  27. Rosenbaum DA, Chapman KM, Weigelt M, Weiss DJ, van der Wel R (2012) Cognition, action, and object manipulation. Psychol Bull 138(5):924–946. doi: 10.1037/a0027839 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Sartori L, Straulino E, Castiello U (2011) How objects are grasped: the interplay between affordances and end-goals. PLoS One 6(9):e25203. doi: 10.1371/journal.pone.0025203 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Short MW, Cauraugh JH (1999) Precision hypothesis and the end-state comfort effect. Acta Psychol 100(3):243–252. doi: 10.1016/S0001-6918(98)00020-1 CrossRefGoogle Scholar
  30. Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226–1235PubMedCrossRefGoogle Scholar
  31. van der Wel RP, Rosenbaum DA (2010) Bimanual grasp planning reflects changing rather than fixed constraint dominance. Exp Brain Res 205(3):351–362. doi: 10.1007/s00221-010-2368-2 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Wing AM, Flanagan JR, Richardson J (1997) Anticipatory postural adjustments in stance and grip. Exp Brain Res 116(1):122–130PubMedCrossRefGoogle Scholar
  33. Zhang W, Gordon AM, Fu Q, Santello M (2010) Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces. J Neurophysiol 103(6):2953–2964. doi: 10.1152/jn.00140.2010 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Oliver Herbort
    • 1
    Email author
  • Martin V. Butz
    • 2
  • Wilfried Kunde
    • 1
  1. 1.Department of PsychologyUniversity of WürzburgWürzburgGermany
  2. 2.Department of Computer ScienceUniversity of TübingenTübingenGermany

Personalised recommendations