Skip to main content
Log in

The benefit of offline sleep and wake for novel object recognition

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

How do we segment and recognize novel objects? When explicit cues from motion and color are available, object boundary detection is relatively easy. However, under conditions of deep camouflage, in which objects share the same image cues as their background, the visual system must reassign new functional roles to existing image statistics in order to group continuities for detection and segmentation of object boundaries. This bootstrapped learning process is stimulus dependent and requires extensive task-specific training. Using a between-subject design, we tested participants on their ability to segment and recognize novel objects after a consolidation period of sleep or wake. We found a specific role for rapid eye movement (REM, n = 43) sleep in context-invariant novel object learning, and that REM sleep as well as a period of active wake (AW, n = 35) increased segmentation of context-specific object learning compared to a period of quiet wake (QW, n = 38; p = .007 and p = .017, respectively). Performance in the non-REM nap group (n = 32) was not different from the other groups. The REM sleep enhancement effect was especially robust for the top performing quartile of subjects, or “super learners” (p = .037). Together, these results suggest that the construction and generalization of novel representations through bootstrapped learning may benefit from REM sleep, and more specific object learning may also benefit from AW. We discuss these results in the context of shared electrophysiological and neurochemical features of AW and REM sleep, which are distinct from QW and non-REM sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aeschbach D, Cutler AJ, Ronda JM (2008) A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. J Neurosci 28:2766–2772

    Article  CAS  PubMed  Google Scholar 

  • Åkerstedt T, Gillberg M (1990) Subjective and objective sleepiness in the active individual. Int J Neurosci 52:29–37

    Article  PubMed  Google Scholar 

  • Andrews-Hanna JR (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18:251–270

    Article  PubMed Central  PubMed  Google Scholar 

  • Beer AL, Vartak D, Greenlee MW (2013) Nicotine facilitates memory consolidation in perceptual learning. Neuropharmacology 64:443–451

    Article  CAS  PubMed  Google Scholar 

  • Blitzer RD, Gil O, Landau EM (1990) Cholinergic stimulation enhances long-term potentiation in the CA1 region of rat hippocampus. Neurosci Lett 119:207–210

    Article  CAS  PubMed  Google Scholar 

  • Brady MJ, Kersten D (2003) Bootstrapped learning of novel objects. J Vis 3:413–422

    Google Scholar 

  • Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Herscovitch P (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 120:1173–1197

    Article  PubMed  Google Scholar 

  • Braun AR, Balkin TJ, Wesensten NJ, Gwadry F, Carson RE, Varga M, Herscovitch P (1998) Dissociated pattern of activity in visual cortices and their projections during human rapid eye movement sleep. Science 279:91–95

    Article  CAS  PubMed  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Buzsáki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570

    Article  PubMed  Google Scholar 

  • Cai DJ, Mednick SA, Harrison EM, Kanady JC, Mednick SC (2009) REM, not incubation, improves creativity by priming associative networks. Proc Natl Acad Sci 106:10130–10134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chauvette S, Seigneur J, Timofeev I (2012) Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron 75:1105–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corsi-Cabrera M, Miró E, del-Rıo-Portilla Y, Pérez-Garci E, Villanuev Y, Guevara MA (2003) Rapid eye movement sleep dreaming is characterized by uncoupled EEG activity between frontal and perceptual cortical regions. Brain Cogn 51:337–345

    Article  CAS  PubMed  Google Scholar 

  • Durrant SJ, Taylor C, Cairney S, Lewis PA (2011) Sleep-dependent consolidation of statistical learning. Neuropsychologia 49:1322–1331

    Article  PubMed  Google Scholar 

  • Gais S, Plihal W, Wagner U, Born J (2000) Early sleep triggers memory for early visual discrimination skills. Nat Neurosci 3:1335–1339

    Article  CAS  PubMed  Google Scholar 

  • Gais S, Rasch B, Wagner U, Born J (2008) Visual-procedural memory consolidation during sleep blocked by glutamatergic receptor antagonists. J Neurosci 28:5513–5518

    Article  CAS  PubMed  Google Scholar 

  • Gegenfurtner KR, Rieger J (2000) Sensory and cognitive contributions of color to the recognition of natural scenes. Curr Biol 10:805–808

    Article  CAS  PubMed  Google Scholar 

  • Gómez RL, Bootzin RR, Nadel L (2006) Naps promote abstraction in language-learning infants. Psychol Sci 17:670–674

    Article  PubMed  Google Scholar 

  • Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 3:351–359

    Article  PubMed  Google Scholar 

  • Hasselmo ME, Bower JM (1993) Acetylcholine and memory. Trends Neurosci 16:218–222

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME, McGaughy J (2004) High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog Brain Res 145:207–231

    Article  CAS  PubMed  Google Scholar 

  • Horne JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness–eveningness in human circadian rhythms. Int J Chronobiol 4:97–110

    CAS  PubMed  Google Scholar 

  • Jasper HH, Tessier J (1971) Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 172:601–602

    Article  CAS  PubMed  Google Scholar 

  • Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14:540–545

    CAS  PubMed  Google Scholar 

  • Jones Leonard B, McNaughton BL, Barnes CA (1987) Suppression of hippocampal synaptic plasticity during slow-wave sleep. Brain Res 425:174–177

    Article  Google Scholar 

  • Kametani H, Kawamura H (1990) Alterations in acetylcholine release in the rat hippocampus during sleep-wakefulness detected by intracerebral dialysis. Life Sci 47:421–426

    Article  CAS  PubMed  Google Scholar 

  • Karni A, Sagi D (1991) Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc Natl Acad Sci USA 88:4966–4970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karni A, Tanne D, Rubenstein BS, Askenasy JJ, Sagi D (1994) Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265:679–682

    Article  CAS  PubMed  Google Scholar 

  • Koike T, Kan S, Misaki M, Miyauchi S (2011) Connectivity pattern changes in default-mode network with deep non-REM and REM sleep. Neurosci Res 69:322–330

    Article  PubMed  Google Scholar 

  • Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME (2009) Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci 106:4489–4494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo L, Chen WH, Wang M, Zhu DM, She JQ, Ruan DY (2008) Modulation of long-term potentiation by individual subtypes of muscarinic acetylcholine receptor in the rat dentate gyrus. Hippocampus 18:989–995

    Article  CAS  PubMed  Google Scholar 

  • Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C, Aerts J, Del Fiore G, Dequeldre C, Meulemans T, Luxen A, Franck G, Van Der Linden M, Smith C, Cleeremans A (2000) Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci 3:831–836

    Article  CAS  PubMed  Google Scholar 

  • Marrosu F, Portas C, Mascia MS, Casu MA, Fà M, Giagheddu M, Imperato A, Gessa GL (1995) Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Res 671:329–332

    Article  CAS  PubMed  Google Scholar 

  • Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315:393–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsukawa M, Ogawa M, Nakadate K, Maeshima T, Ichitani Y, Kawai N, Okado N (1997) Serotonin and acetylcholine are crucial to maintain hippocampal synapses and memory acquisition in rats. Neurosci Lett 230:13–16

    Article  CAS  PubMed  Google Scholar 

  • McDevitt EA, Rokem A, Silver MA, Mednick SC (2013) Sex differences in sleep-dependent perceptual learning. Vis Res. doi:10.1016/j.visres.2013.10.009

  • Mednick SC, Nakayama K, Stickgold R (2003) Sleep-dependent learning: a nap is as good as a night. Nat Neurosci 6:697–698

    Article  CAS  PubMed  Google Scholar 

  • Mednick SC, Cai DJ, Shuman T, Anagnostaras S, Wixted JT (2011) An opportunistic theory of cellular and systems consolidation. Trends Neurosci 34:504–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patil MM, Linster C, Lubenov E, Hasselmo ME (1998) Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. J Neurophysiol 80:2467–2474

    CAS  PubMed  Google Scholar 

  • Pérez-Garci E, del-Rıo-Portilla Y, Guevara MA, Arce C, Corsi-Cabrera M (2001) Paradoxical sleep is characterized by uncoupled gamma activity between frontal and perceptual cortical regions. Sleep 24:118

    PubMed  Google Scholar 

  • Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Brain Information Service, University of California, Los Angeles, CA

    Google Scholar 

  • Rokem A, Silver MA (2010) Cholinergic enhancement augments magnitude and specificity of visual perceptual learning in healthy humans. Curr Biol 20:1723–1728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rokem A, Silver MA (2013) The benefits of cholinergic enhancement during perceptual learning are long-lasting. Front Comput Neurosci 7:66

    Article  PubMed Central  PubMed  Google Scholar 

  • Sale A, De Pasquale R, Bonaccorsi J, Pietra G, Olivieri D, Berardi N, Maffei L (2011) Visual perceptual learning induces long-term potentiation in the visual cortex. Neuroscience 172:219–225

    Article  CAS  PubMed  Google Scholar 

  • Segal M, Auerbach JM (1997) Muscarinic receptors involved in hippocampal plasticity. Life Sci 60:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Smith D (2003) Ingestion of ethanol just prior to sleep onset impairs memory for procedural but not declarative tasks. Sleep 2:185–191

    Google Scholar 

  • Stickgold R, Scott L, Rittenhouse C, Hobson JA (1999) Sleep-induced changes in associative memory. J Cogn Neurosci 11:182–193

    Article  CAS  PubMed  Google Scholar 

  • Stickgold R, Whidbee D, Schirmer B, Patel V, Hobson JA (2000) Visual discrimination task improvement: a multi-step process occurring during sleep. J Cogn Neurosci 12:246–254

    Article  CAS  PubMed  Google Scholar 

  • Svoboda E, McKinnon MC, Levine B (2006) The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44:2189–2208

    Article  PubMed Central  PubMed  Google Scholar 

  • Therriault DJ, Yaxley RH, Zwaan RA (2009) The role of color diagnosticity in object recognition and representation. Cogn Process 10:335–342

    Article  PubMed  Google Scholar 

  • Tononi G, Edelman GM, Sporns O (1998) Complexity and coherency: integrating information in the brain. Trends Cogn Sci 2:474–484

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kourtzi Z (2010) Learning-dependent plasticity with and without training in the human brain. Proc Natl Acad Sci 107:13503–13508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ryan Wong, Jason Parnass, and Eunice Oh for their help in collecting and scoring the data. Research was supported by the following National Institutes of Health award: K01 MH080992 (S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara C. Mednick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDevitt, E.A., Rowe, K.M., Brady, M. et al. The benefit of offline sleep and wake for novel object recognition. Exp Brain Res 232, 1487–1496 (2014). https://doi.org/10.1007/s00221-014-3830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3830-3

Keywords

Navigation