Advertisement

Experimental Brain Research

, Volume 232, Issue 3, pp 1037–1045 | Cite as

Otolith signals contribute to inter-individual differences in the perception of gravity-centered space

  • C. CianEmail author
  • P. A. Barraud
  • A. C. Paillard
  • S. Hidot
  • P. Denise
  • J. Ventre-Dominey
Research Article

Abstract

The aim of the present study was to investigate (1) the relative contribution of the egocentric reference as well as body orientation perception to visual horizon percept during tilt or during increased gravito-inertial acceleration (GiA, hypergravity environment) conditions and (2) the role of vestibular signals in the inter-individual differences observed in these perceptual modalities. Perceptual estimates analysis showed that backward tilt induced (1) an elevation of the visual horizon, (2) an elevation of the egocentric estimation (visual straight ahead) and (3) an overestimation of body tilt. The increase in the magnitude of GiA induced (1) a lowering of the apparent horizon, (2) a lowering of the straight ahead and (3) a perception of backward tilt. Overall, visual horizon percept can be expressed as the combination of body orientation perception and egocentric estimation. When assessing otolith reactivity using off-vertical axis rotation (OVAR), only visual egocentric estimation was significantly correlated with horizontal OVAR performance. On the one hand, we found a correlation between a low modulation amplitude of the otolith responses and straight ahead accuracy when the head axis was tilted relative to gravity. On the other hand, the bias of otolith responses was significantly correlated with straight ahead accuracy when subjects were submitted to an increase in the GiA. Thus, straight ahead sense would be dependent to some extent to otolith function. These results are discussed in terms of the contribution of otolith inputs in the overall multimodal integration subtending spatial constancy.

Keywords

Spatial perception Horizon Straight ahead Body tilt Hypergravity Otolith function Off-vertical axis rotation 

Notes

Acknowledgments

The authors are thankful to Mr Alain Roux (IRBA, La Tronche) for his technical expertise and Dr. Peter Dominey (INSERM U846, Lyon) for his helpful assistance in correcting the manuscript.

References

  1. Angelaki DE, Hess BJ (1996) Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation. J Neurophysiol 75:2405–2424PubMedGoogle Scholar
  2. Angelaki DE, Perachio AA, Mustari MJ, Strunk CL (1992) Role of irregular otolith afferents in the steady-state nystagmus during off-vertical axis rotation. J Neurophysiol 68:1895–1900PubMedGoogle Scholar
  3. Baloh RW, Henn V, Jager J (1982) Habituation of the human vestibulo-ocular reflex with low-frequency harmonic acceleration. Am J Otolaryngol 3(4):235–241PubMedCrossRefGoogle Scholar
  4. Bauermeister M (1964) Effect of body tilt on apparent verticality, apparent body position, and their relation. J Exp Psychol 67(2):142–147PubMedCrossRefGoogle Scholar
  5. Bisdorff AR, Wolsley CJ, Anastasopoulos D, Bronstein AM, Gresty MA (1996) The perception of body verticality (subjective postural vertical) in peripheral and central vestibular disorders. Brain 119:1523–1534PubMedCrossRefGoogle Scholar
  6. Bringoux L, Marin L, Nougier V, Barraud PA, Raphel C (2000) Effects of gymnastics expertise on the perception of body orientation in the pitch dimension. J Vestib Res 10:251–258PubMedGoogle Scholar
  7. Bringoux L, Tamura K, Faldon M, Gresty MA, Bronstein AM (2004) Influence of whole-body pitch tilt and kinesthetic cues on the perceived gravity-referenced eye level. Exp Brain Res 155:385–392PubMedCrossRefGoogle Scholar
  8. Bringoux L, Mezey LE, Faldon M, Gresty MA, Bronstein AM (2007) Influence of pitch tilts on the perception of gravity-referenced eye level in labyrinthine defective subjects. Neuropsychologia 45:350–356PubMedCrossRefGoogle Scholar
  9. Bringoux L, Robic G, Gauthier GM, Vercher JL (2008) Judging beforehand the possibility of passing under obstacles without motion: the influence of egocentric and geocentric frames of reference. Exp Brain Res 185:673–680PubMedCrossRefGoogle Scholar
  10. Bronstein AM (1999) The interaction of otolith and proprioceptive information in the perception of verticality. The effects of labyrinthine and CNS disease. Ann N Y Acad Sci 871:324–333PubMedCrossRefGoogle Scholar
  11. Carriot J, Charles C, Huffenus AF, Nougier V, Raphel C, Cian C (2005) Effect of low gravitational stimulation on the perception of target elevation: role of spatial expertise. Percept Psychophys 67:1044–1051PubMedCrossRefGoogle Scholar
  12. Carriot J, Barraud PA, Nougier V, Cian C (2006) Difference in the perception of the horizon during true and simulated tilt in the absence of semicircular canal cues. Exp Brain Res 174(1):158–166PubMedCrossRefGoogle Scholar
  13. Ceyte H, Cian C, Nougier V, Olivier I, Trousselard M (2007) Role of gravity-based information on the orientation and localization of the perceived body midline. Exp Brain Res 176(3):504–509PubMedCrossRefGoogle Scholar
  14. Ceyte H, Cian C, Nougier V, Trousselard M, Barraud PA (2009) Influence of perceived egocentric coordinates on the subjective visual vertical. Neurosci Lett 462:85–88PubMedCrossRefGoogle Scholar
  15. Chen A, DeAngelis GC, Angelaki DE (2011) A comparison of vestibular spatiotemporal tuning in macaque parietoinsular vestibular cortex, ventral intraparietal area, and medial superior temporal area. J Neurosci 31:3082–3094PubMedCentralPubMedCrossRefGoogle Scholar
  16. Cohen MM (1973) Elevator illusion: influences of otolith organ activity and neck proprioception. Percept Psychophys 14:401–406CrossRefGoogle Scholar
  17. Cohen MM (1992) Perception and action in altered gravity. Ann N Y Acad Sci 656:354–362PubMedCrossRefGoogle Scholar
  18. Cohen MM (1996) Elevator illusion and gaze direction in hypergravity. Aviat Space Environ Med 67:676Google Scholar
  19. Cohen MM, Crosbie RJ, Blackburn LH (1973) Disorienting effects of aircraft catapult launchings. Aerosp Med 44(1):37–39PubMedGoogle Scholar
  20. Cohen B, Suzuki JI, Raphan T (1983) Role of the otolith organs in generation of horizontal nystagmus: effects of selective labyrinthine lesions. Brain Res 276(1):159–164PubMedCrossRefGoogle Scholar
  21. Cohen B, Wearne S, Dai M, Raphan T (1999) Spatial orientation of the angular vestibulo-ocular reflex. J Vestib Res 9:163–172PubMedGoogle Scholar
  22. Cohen B, Maruta J, Raphan T (2001) Orientation of the eyes to gravitoinertial acceleration. Ann N Y Acad Sci 942:241–258PubMedCrossRefGoogle Scholar
  23. Darlot C, Denise P, Droulez J, Cohen B, Berthoz A (1988) Eye movements induced by off-vertical axis rotation (OVAR) at small angles of tilt. Exp Brain Res 73:91–105PubMedCrossRefGoogle Scholar
  24. Denise P, Etard O, Zupan L, Darlot C (1996) Motion sickness during off-vertical axis rotation: prediction by a model of sensory interactions and correlation with other forms of motion sickness. Neurosci Lett 203(3):183–186PubMedCrossRefGoogle Scholar
  25. Goldberg JM, Fernandez C, Smith CE (1982) Responses of vestibular-nerve afferents in the squirrel monkey to externally applied galvanic currents. Brain Res 252(1):156–160PubMedCrossRefGoogle Scholar
  26. Hain TC (1986) A model of the nystagmus induced by off vertical axis rotation. Biol Cybern 54:337–350PubMedCrossRefGoogle Scholar
  27. Hamann KF, Weiss U, Ruile A (2009) Effects of acute vestibular lesions on visual orientation and spatial memory, shown for the visual straight ahead. Ann N Y Acad Sci 1164:305–308PubMedCrossRefGoogle Scholar
  28. Haslwanter T, Jaeger R, Mayr S, Fetter M (2000) Three-dimensional eye-movement responses to off-vertical axis rotations in humans. Exp Brain Res 134:96–106PubMedCrossRefGoogle Scholar
  29. Higashiyama A, Koga K (1998) Apparent body tilt and postural aftereffect. Percept Psychophys 60(2):331–347PubMedCrossRefGoogle Scholar
  30. Jager J, Henn V (1981) Vestibular habituation in man and monkey during sinusoidal rotation. Ann N Y Acad Sci 374:330–339PubMedCrossRefGoogle Scholar
  31. Janeke JB, Jongkees LB, Oosterveld WJ (1970) Relationship between otoliths and nystagmus. Acta Otolaryngol 69:1–6PubMedCrossRefGoogle Scholar
  32. Laurens J, Angelaki DE (2011) The functional significance of velocity storage and its dependence on gravity. Exp Brain Res 210:407–422PubMedCentralPubMedCrossRefGoogle Scholar
  33. Matin L, Li W (1995) Multimodal basis for egocentric spatial localization and orientation. J Vestib Res 5:499–518PubMedCrossRefGoogle Scholar
  34. Niven JJ (1963) The elevator illusion: apparent motion of a visual target during vertical acceleration. Joint Rept US Naval School of Aviation Medicine, 93:R-93Google Scholar
  35. Ooi TL, Wu B, He Z (2001) Distance determined by the angular declination below the horizon. Nature 414:197–200PubMedCrossRefGoogle Scholar
  36. Paillard A, Denise P, Barraud PA, Roux A, Cian C (2009) The elevator illusion results from the combination of body orientation and egocentric perception. Neurosci Lett 464(3):156–159PubMedCrossRefGoogle Scholar
  37. Quarck G, Etard O, Oreel M, Denise P (2000) Motion sickness occurrence does not correlate with nystagmus characteristics. Neurosci Lett 287(1):49–52PubMedCrossRefGoogle Scholar
  38. Saj A, Honoré J, Bernard-Demanze L, Devèze A, Magnan J, Borel L (2012) Where is straight ahead to a patient with unilateral vestibular loss? Cortex 49:1219–1228Google Scholar
  39. Schöne H (1964) On the role of gravity in human spatial orientation. Aerosp Med 35:764–772Google Scholar
  40. Stoper AE, Cohen MM (1986) Judgments of eye level in light and in darkness. Percept Psychophys 40:311–316PubMedCrossRefGoogle Scholar
  41. Stoper AE, Cohen MM (1989) Effect of structured visual environments on apparent eye level. Percept Psychophys 46:469–475PubMedCrossRefGoogle Scholar
  42. Tanguy SG, Quarck GM, Etard OM, Gauthier AF, Denise P (2008) Are otolithic inputs interpreted better in figure skaters? NeuroReport 19(5):565–568PubMedCrossRefGoogle Scholar
  43. Ventre-Dominey J, Vallee B (2007) Vestibular integration in human cerebral cortex contributes to spatial remapping. Neuropsychologia 45:435–439PubMedCrossRefGoogle Scholar
  44. Ventre-Dominey J, Nighoghossian N, Denise P (2003) Evidence for interacting cortical control of vestibular function and spatial representation in man. Neuropsychologia 41:1884–1898PubMedCrossRefGoogle Scholar
  45. Ventre-Dominey J, Luyat M, Denise P, Darlot C (2008) Motion sickness induced by otolith stimulation is correlated with otolith-induced eye movements. Neuroscience 155(3):771–779PubMedCrossRefGoogle Scholar
  46. Wade NJ (1970) Effects of prolonged tilt on visual orientation. J Exp Psychol 22:423–439CrossRefGoogle Scholar
  47. Wearne S, Raphan T, Cohen B (1997) Contribution of vestibular commissural pathways to spatial orientation of the angular vestibuloocular reflex. J Neurophysiol 78:1193–1197PubMedGoogle Scholar
  48. Young LR (1984) Perception of the body in space: mechanisms. In: Smith I (ed) Handbook of physiology—the nervous system, vol 3. Academic Press, New-York, pp 1023–1066Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. Cian
    • 1
    • 2
    Email author
  • P. A. Barraud
    • 1
  • A. C. Paillard
    • 1
  • S. Hidot
    • 3
  • P. Denise
    • 4
    • 5
    • 6
  • J. Ventre-Dominey
    • 3
  1. 1.Institut de Recherche Biomédicale des Armées (IRBA)Brétigny sur OrgeFrance
  2. 2.Laboratoire de Psychologie et NeuroCognition, CNRS, UMR 5105University of Grenoble AlpesGrenobleFrance
  3. 3.INSERM U846Bron CedexFrance
  4. 4.Normandie UniversityCaenFrance
  5. 5.INSERM U 1075CaenFrance
  6. 6.UCBN, CometeCaenFrance

Personalised recommendations