Experimental Brain Research

, Volume 232, Issue 1, pp 113–119 | Cite as

Increased response conflict in recreational cocaine polydrug users

  • Roberta SellaroEmail author
  • Bernhard Hommel
  • Lorenza S. Colzato
Research Article


Recent studies suggest that recreational use of cocaine is associated with significant impairments in the same cognitive control functions that are affected by chronic use. Here we tested whether recreational cocaine use can impact the emergence and resolution of response conflict in conflict-inducing tasks. Recreational cocaine polydrug users (n = 17) and cocaine-free controls (n = 17), matched for sex, age, intelligence, and alcohol consumption, performed a Simon task—which is known to induce response conflict. Recreational users showed a larger Simon effect, indicating that they had more difficulty resolving stimulus-induced response conflict. This finding is consistent with the recent literature showing that even small doses of cocaine are sufficient to compromise key cognitive control functions.


Cocaine Polydrug Interference control Response conflict Simon effect Dopamine (DA) 


  1. Aichert S, Wöstmann NM, Costa A et al (2012) Associations between trait impulsivity and prepotent response inhibition. J Clin Exp Neuropsychol 34:1016–1032PubMedCrossRefGoogle Scholar
  2. Barkus E, Murray RM (2010) Substance use in adolescence and psychosis: clarifying the relationship. Annu Rev Clin Psychol 6:365–389PubMedCrossRefGoogle Scholar
  3. Basurto FZ, Montes JMG, Cubos PF, Santed FS, Rios FL, Moreno AM (2009) Validity of the self-report on drug use by university students: correspondence between self-reported use and use detected in urine. Psicothema 21(2):213–219Google Scholar
  4. Bechara A (2005) Decision making, impulse control and neurocognitive perspective. Nat Neurosci 8:1458–1463PubMedCrossRefGoogle Scholar
  5. Biggins CA, MacKay S, Clark W, Fein G (1997) Event-related potential evidence for frontal cortex effects of chronic cocaine dependence. Biol Psychiatry 42:472–485PubMedCrossRefGoogle Scholar
  6. Blin O, Masson G, Azulay JP, Fondarai J, Serratrice G (1990) Apomorphine induced blinking and yawning in healthy volunteers. Br J Clin Pharmacol 30:769–773PubMedCrossRefGoogle Scholar
  7. Bolla KI, Cadet J, London ED (1998) The neuropsychiatry of chronic cocaine abuse. J Neuropsychiatry Clin Neurosc 10:280–289Google Scholar
  8. Bolla KI, Funderburk FR, Cadet JL (2000) Differential effects of cocaine and cocaine + alcohol on neurocognitive performance. Neurology 54:2285–2292PubMedCrossRefGoogle Scholar
  9. Bolla KI et al (2003) Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19:1085–1094PubMedCentralPubMedCrossRefGoogle Scholar
  10. Botvinick M (2007) Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn Affect Behav Neurosci 7:356–366PubMedCrossRefGoogle Scholar
  11. Colzato LS, Hommel B (2009) Recreational use of cocaine eliminates inhibition of return. Neuropsychology 23:125–129PubMedCrossRefGoogle Scholar
  12. Colzato LS, van den Wildneberg WPM, Hommel B (2007) Impaired inhibitory control in recreational cocaine users. PLoS ONE 2:e1143PubMedCentralPubMedCrossRefGoogle Scholar
  13. Colzato LS, van den Wildneberg WPM, Hommel B (2008) Reduced spontaneous eye blink rates in recreational cocaine users: evidence for dopaminergic hypoactivity. PLoS ONE 3:e3461PubMedCentralPubMedCrossRefGoogle Scholar
  14. Colzato LS, Huizinga M, Hommel B (2009a) Recreational cocaine polydrug use impairs cognitive flexibility but not working memory. Psychopharmacology 207:225–234PubMedCentralPubMedCrossRefGoogle Scholar
  15. Colzato LS, van den Wildneberg WPM, Hommel B (2009b) Reduced attentional scope in cocaine polydrug users. PLoS ONE 4:e6043PubMedCentralPubMedCrossRefGoogle Scholar
  16. Cools R (2006) Dopaminergic modulation of cognitive function—implication for L-DOPA therapy in Parkinson’s disease. Neurosci Biobehav Rev 30:1–34PubMedCrossRefGoogle Scholar
  17. Crews FT, Boettiger CA (2009) Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav 93:237–247PubMedCentralPubMedCrossRefGoogle Scholar
  18. Ersche KD, Jones PS, Williams GB, Turton AJ, Robbins TW, Bullmore ET (2012) Abnormal brain structure implicated in stimulant drug addiction. Science 335:601–604PubMedCrossRefGoogle Scholar
  19. European Monitoring Centre for Drugs and Drug Addiction (2012) The state of the drugs problem in Europe, Annual Report. Accessed November 2012
  20. Farrè M, de la Torre R, Llorente M et al (1993) Alcohol and cocaine interactions in humans. J Pharmacol Exp Ther 266:1364–1373 Google Scholar
  21. Fillmore MT, Rush CR, Hays L (2002) Acute effects of oral cocaine on inhibitory control of behavior in humans. Drug Alcohol Depend 67:157–167PubMedCrossRefGoogle Scholar
  22. Fillmore MT, Rush CR, Abroms BD (2005) d-Amphetamine-induced enhancement of inhibitory mechanisms involved in visual search. Exp Clin Psychopharm 13:200–208CrossRefGoogle Scholar
  23. Fishbein DH, Eldreth DL, Hyde C et al (2005) Risky decision making and the anterior cingulate cortex in abstinent drug abusers and nonusers. Cogn Brain Res 23:119–136CrossRefGoogle Scholar
  24. Franken IHA, van Strien JW, Franzek EJ, van de Wetering BJ (2007) Error processing deficits in patients with cocaine dependence. Biol Psychol 75:45–51PubMedCrossRefGoogle Scholar
  25. Garavan H, Kaufman JN, Hester R (2008) Acute effects of cocaine on the neurobiology of cognitive control. Philos Trans R Soc Lond B Biol Sci 363:3267–3276PubMedCrossRefGoogle Scholar
  26. Ghahremani DG, Lee B, Robertson CL et al (2012) Striatal dopamine D2/D3 receptors mediate response inhibition and related activity in fronto-striatal neural circuitry in humans. J Neurosci 32:7316–7324PubMedCentralPubMedCrossRefGoogle Scholar
  27. Glintborg B, Olsen L, Poulsen H, Linnet K, Dalhoff K (2008) Reliability of self-reported use of amphetamine, barbiturates, benzodiazepines, cannabinoids, cocaine, methadone, and opiates among acutely hospitalized elderly medical patients. Clin Toxicol 46:239–242CrossRefGoogle Scholar
  28. Grov C, Kelly BC, Parsons JT (2009) Polydrug use among club-going young adults recruited through time-space sampling. Subst Use Misuse 44:848–864PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hershey T, Black KJ, Hartlein J et al (2004) Dopaminergic modulation of response inhibition: an fMRI study. Cogn Brain Res 20:438–448CrossRefGoogle Scholar
  30. Herzig DA, Brooks R, Mohr C (2013) Inferring about individual drug and schizotypy effects on cognitive functioning in polydrug using mephedrone users before and after clubbing. Hum Psychopharmacol 28:168–182PubMedCrossRefGoogle Scholar
  31. Hester R, Garavan H (2009) Neural mechanisms underlying drug-related cue distraction in active cocaine users. Pharmacol Biochem Behav 93:270–277PubMedCrossRefGoogle Scholar
  32. Hester R, Simoes-Franklin C, Garavan H (2007) Post-error behavior in active cocaine users: poor awareness of errors in the presence of intact performance adjustments. Neuropsychopharmacology 32:1974–1984PubMedCrossRefGoogle Scholar
  33. Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709PubMedCrossRefGoogle Scholar
  34. Hommel B (2011) The Simon effect as tool and heuristic. Acta Psychol 136:189–202CrossRefGoogle Scholar
  35. Kane MJ, Conway ARA, Miura TK, Colflesh GJH (2007) Working memory, attention control, and the N-back task: a question of construct validity. J Exp Psychol Learn Mem Cogn 33:615–622PubMedCrossRefGoogle Scholar
  36. Karson CN (1983) Spontaneous eye-blink rates and dopaminergic systems. Brain 106:643–653PubMedCrossRefGoogle Scholar
  37. Kelly BC, Parsons JT (2008) Predictors and comparisons of polydrug and non-polydrug cocaine use in club subcultures. Am J Drug Alcohol Abuse 34:774–781PubMedCentralPubMedCrossRefGoogle Scholar
  38. Kleven MS, Koek W (1996) Differential effects of direct and indirect dopamine agonists on eye blink rate in cynomolgus monkeys. J Pharmacol Exp Ther 279:1211–1219PubMedGoogle Scholar
  39. Kornblum S, Hasbroucq T, Osman A (1990) Dimensional overlap: cognitive basis for stimulus-response compatibility—a model and taxonomy. Psychol Rev 97:253–270PubMedCrossRefGoogle Scholar
  40. Kübler A, Murphy K, Garavan H (2005) Cocaine dependence and attention switching within and between verbal and visuospatial working memory. Eur J Neurosci 21:1984–1992PubMedCrossRefGoogle Scholar
  41. Lecrubier Y, Sheehan DV, Weiller E et al (1997) The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. Eur Psychiatry 12:224–231CrossRefGoogle Scholar
  42. Leri F, Bruneau J, Stewart J (2003) Understanding polydrug use: review of heroin and cocaine co-use. Addiction 98:7–22PubMedCrossRefGoogle Scholar
  43. Little KY, Ramssen E, Welchko R, Volberg V, Roland CJ, Cassin B (2009) Decreased brain dopamine cell numbers in human cocaine users. Psychiatry Res 168:173–180PubMedCrossRefGoogle Scholar
  44. Logan GD (1994) On the ability to inhibit thought and action: A users’ guide to the stop signal paradigm. In: Dagenbach D, Carr TH (eds) Inhibitory processes in attention, memory, and language. Academic Press, San Diego, pp 189–239Google Scholar
  45. Lu C-H, Proctor RW (1995) The influence of irrelevant location information on performance: a review of the Simon and spatial Stroop effects. Psychon B Rev 2:174–207CrossRefGoogle Scholar
  46. Martinez D, Greene K, Broft A et al (2009) Lower level of endogenous dopamine in patients with cocaine dependence: findings from PET imaging of D2/D3 receptors following acute dopamine depletion. Am J Psychiatry 166:1170–1177PubMedCentralPubMedCrossRefGoogle Scholar
  47. Monterosso J, Ehrman R, Napier KL, O’Brien CP, Childress AR (2001) Three decision-making tasks in cocaine-dependent patients: do they measure the same construct? Addiction 96:1825–1837PubMedCrossRefGoogle Scholar
  48. Morgan MJ (1998) Recreational use of ‘ecstasy’ (MDMA) is associated with elevated impulsivity. Neuropsychopharmacology 19:252–264PubMedCrossRefGoogle Scholar
  49. Nader MA, Morgan D, Gage HD et al (2006) PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 9:1050–1056PubMedCrossRefGoogle Scholar
  50. Raven JC, Court JH, Raven J (1988) Manual for Raven’s progressive matrices and vocabulary scales. Lewis, LondonGoogle Scholar
  51. Sheehan DV, Lecrubier Y, Sheenan KH et al (1998) The Mini International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–23PubMedGoogle Scholar
  52. Shukla D (1985) Blink rate as clinical indicator. Neurology 35:286PubMedCrossRefGoogle Scholar
  53. Simon JR, Small AM Jr (1969) Processing auditory information: interference from an irrelevant cue. J Appl Psychol 53:433–435PubMedCrossRefGoogle Scholar
  54. Soar K, Mason C, Potton A, Dawkins L (2012) Neuropsychological effects associated with recreational cocaine use. Psychopharmacology 222:633–643PubMedCrossRefGoogle Scholar
  55. Streeter CC, Terhune DB, Whitfield TH et al (2008) Performance on the Stroop predicts treatment compliance in cocaine-dependent individuals. Neuropsychopharmacology 33:827–836PubMedCrossRefGoogle Scholar
  56. Taylor JR, Elsworth JD, Lawrence MS et al (1999) Spontaneous blink rates correlate with dopamine levels in the caudate nucleus of MPTP-treated monkeys. Exp Neurol 158:214–220PubMedCrossRefGoogle Scholar
  57. Tomasi D, Volkow ND, Ruiliang W et al (2010) Disrupted functional connectivity with dopaminergic midbrain in cocaine abusers. PLoS ONE 5:1–10CrossRefGoogle Scholar
  58. Van der Lubbe RHJ, Verleger R (2002) Aging and the Simon task. Psychophysiology 39:100–110PubMedCrossRefGoogle Scholar
  59. Verdejo-Garcia AJ, Perez-Garcia M (2007) Profile of executive deficits in cocaine and heroin polysubstance users: common and differential effects on separate executive components. Psychopharmacology 190:517–530PubMedCrossRefGoogle Scholar
  60. Verdejo-Garcia A, Bechara A, Recknor E (2006) Executive dysfunction in substance dependent individuals during drug use and abstinence: an examination of the behavioural, cognitive, and emotional correlates of addiction. J Int Neuropsychol Soc 12:405–415PubMedGoogle Scholar
  61. Verdejo-Garcia AJ, Lawrence AJ, Clarke L (2008) Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev 32:777–810PubMedCrossRefGoogle Scholar
  62. Volkow ND, Fowler JS, Wang GJ et al (1993) Dopaminergic dysregulation of frontal metabolism may contribute to cocaine addiction. Synapse 14:169–177PubMedCrossRefGoogle Scholar
  63. Volkow ND, Wang GJ, Fowler JS et al (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386:830–833PubMedCrossRefGoogle Scholar
  64. Volkow ND, Fowler JS, Wang GJ (1999) Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans. J Psychopharmacol 13:337–345PubMedCrossRefGoogle Scholar
  65. Vonmoos M, Hulka L, Preller K et al (2013a) Differences in self-reported and behavioral measures of impulsivity in recreational and dependent cocaine users. Drug Alcohol Depend. doi: 10.1016/j.drugalcdep.2013.05.032
  66. Vonmoos M, Hulka L, Preller K et al (2013b) Cognitive dysfunctions in recreational and dependent cocaine users: the role of ADHD, craving, and early age of onset. Br J Psychiatry 203:35–43PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roberta Sellaro
    • 1
    • 2
    Email author
  • Bernhard Hommel
    • 1
    • 2
  • Lorenza S. Colzato
    • 1
    • 2
  1. 1.Leiden Institute for Brain and CognitionLeiden UniversityLeidenThe Netherlands
  2. 2.Cognitive Psychology UnitLeiden UniversityLeidenThe Netherlands

Personalised recommendations