Skip to main content
Log in

The serotonin 5-HT7 receptors: two decades of research

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Like most neurotransmitters, serotonin possesses a simple structure. However, the pharmacological consequences are more complex and diverse. Serotonin is involved in numerous functions in the human body including the control of appetite, sleep, memory and learning, temperature regulation, mood, behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Low levels of serotonin may be associated with several disorders, namely increase in aggressive and angry behaviors, clinical depression, Parkinson’s disease, obsessive–compulsive disorder, eating disorders, migraine, irritable bowel syndrome, tinnitus, and bipolar disease. These effects are mediated via different serotonin (5-HT) receptors. In this review, we will focus on the last discovered member of this serotonin receptor family, the 5-HT7 receptor. This receptor belongs to the G protein-coupled receptor superfamily and was cloned two decades ago. Later, different splice variants were described but no major functional differences have been described so far. All 5-HT7 receptor variants are coupled to Gαs proteins and stimulate cAMP formation. Recently, several interacting proteins have been reported, which can influence receptor signaling and trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramowski D, Staufenbiel M (1995) Identification of the 5-hydroxytryptamine2C receptor as a 60-kDa N-glycosylated protein in choroid plexus and hippocampus. J Neurochem 65:782–790

    PubMed  CAS  Google Scholar 

  • Adham N, Zgombick JM, Bard J, Branchek TA (1998) Functional characterization of the recombinant human 5-hydroxytryptamine7(a) receptor isoform coupled to adenylate cyclase stimulation. J Pharmacol Exp Ther 287:508–514

    PubMed  CAS  Google Scholar 

  • Alberts GL, Chio CL, Im WB (2001) Allosteric modulation of the human 5-HT7(a) receptor by lipidic amphipathic compounds. Mol Pharmacol 60:1349–1355

    PubMed  CAS  Google Scholar 

  • Andressen KW, Norum JH, Levy FO, Krobert KA (2006) Activation of adenylyl cyclase by endogenous Gs-coupled receptors in human embryonic kidney 293 cells is attenuated by 5-HT7 receptor expression. Mol Pharmacol 69:207–215

    PubMed  CAS  Google Scholar 

  • Backstrom JR, Price RD, Reasoner DT, Sanders-Bush E (2000) Deletion of the serotonin 5-HT2C receptor PDZ recognition motif prevents receptor phosphorylation and delays resensitization of receptor responses. J Biol Chem 275:23620–23626

    PubMed  CAS  Google Scholar 

  • Baker LP, Nielsen MD, Impey S, Metcalf MA, Poser SW, Chan G, Obrietan K, Hamblin MW, Storm DR (1998) Stimulation of type 1 and type 8 Ca2+/calmodulin-sensitive adenylyl cyclases by the Gs-coupled 5-hydroxytryptamine subtype 5-HT7(a) receptor. J Biol Chem 273:17469–17476

    PubMed  CAS  Google Scholar 

  • Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL (1993) Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem 268:23422–23426

    PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    PubMed  CAS  Google Scholar 

  • Bhalla P, Saxena PR, Sharma HS (2002) Molecular cloning and tissue distribution of mRNA encoding porcine 5-HT7 receptor and its comparison with the structure of other species. Mol Cell Biochem 238:81–88

    PubMed  CAS  Google Scholar 

  • Bockaert J, Claeysen S, Compan V, Dumuis A (2004a) 5-HT4 receptors. Curr Drug Targets CNS Neurol Disord 3:39–51

    PubMed  CAS  Google Scholar 

  • Bockaert J, Fagni L, Dumuis A, Marin P (2004b) GPCR interacting proteins (GIP). Pharmacol Ther 103:203–221

    PubMed  CAS  Google Scholar 

  • Bonaventure P, Nepomuceno D, Hein L, Sutcliffe JG, Lovenberg T, Hedlund PB (2004) Radioligand binding analysis of knockout mice reveals 5-hydroxytryptamine(7) receptor distribution and uncovers 8-hydroxy-2-(di-n-propylamino)tetralin interaction with α2-adrenergic receptors. Neuroscience 124:901–911

    PubMed  CAS  Google Scholar 

  • Bonaventure P, Dugovic C, Kramer M, De Boer P, Singh J, Wilson S, Bertelsen K, Di J, Shelton J, Aluisio L, Dvorak L, Fraser I, Lord B, Nepomuceno D, Ahnaou A, Drinkenburg W, Chai W, Dvorak C, Sands S, Carruthers N, Lovenberg TW (2012) Translational evaluation of JNJ-18038683, a 5-hydroxytryptamine type 7 receptor antagonist, on rapid eye movement sleep and in major depressive disorder. J Pharmacol Exp Ther 342:429–440

    PubMed  CAS  Google Scholar 

  • Bruheim S, Krobert KA, Andressen KW, Levy FO (2003) Unaltered agonist potency upon inducible 5-HT7(a) but not 5-HT4(b) receptor expression indicates agonist-independent association of 5-HT7(a) receptor and Gs. Receptors Channels 9:107–116

    PubMed  CAS  Google Scholar 

  • Brys R, Josson K, Castelli MP, Jurzak M, Lijnen P, Gommeren W, Leysen JE (2000) Reconstitution of the human 5-HT1D receptor-G-protein coupling: evidence for constitutive activity and multiple receptor conformations. Mol Pharmacol 57:1132–1141

    PubMed  CAS  Google Scholar 

  • Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26:131–137

    PubMed  CAS  Google Scholar 

  • Carrel D, Hamon M, Darmon M (2006) Role of the C-terminal di-leucine motif of 5-HT1A and 5-HT1B serotonin receptors in plasma membrane targeting. J Cell Sci 119:4276–4284

    PubMed  CAS  Google Scholar 

  • Coupar IM, Desmond PV, Irving HR (2007) Human 5-HT4 and 5-HT7 receptor splice variants: are they Important? Curr Neuropharmacol 5:224–231

    PubMed  CAS  Google Scholar 

  • De Martelaere K, Lintermans B, Haegeman G, Vanhoenacker P (2007) Novel interaction between the human 5-HT7 receptor isoforms and PLAC-24/eIF3k. Cell Signal 19:278–288

    PubMed  Google Scholar 

  • Dutton AC, Massoura AN, Dover TJ, Andrews NA, Barnes NM (2008) Identification and functional significance of N-glycosylation of the 5-ht5A receptor. Neurochem Int 52:419–425

    PubMed  CAS  Google Scholar 

  • Erdmann J, Nothen MM, Shimron-Abarbanell D, Rietschel M, Albus M, Borrmann M, Maier W, Franzek E, Korner J, Weigelt B, Fimmers R, Propping P (1996) The human serotonin 7 (5-HT7) receptor gene: genomic organization and systematic mutation screening in schizophrenia and bipolar affective disorder. Mol Psychiatry 1:392–397

    PubMed  CAS  Google Scholar 

  • Errico M, Crozier RA, Plummer MR, Cowen DS (2001) 5-HT7 receptors activate the mitogen activated protein kinase extracellular signal related kinase in cultured rat hippocampal neurons. Neuroscience 102:361–367

    PubMed  CAS  Google Scholar 

  • Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, Gago B, Roberts DC, Langel U, Genedani S, Ferraro L, de la Calle A, Narvaez J, Tanganelli S, Woods A, Agnati LF (2008) Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res Rev 58:415–452

    PubMed  CAS  Google Scholar 

  • Gelernter J, Rao PA, Pauls DL, Hamblin MW, Sibley DR, Kidd KK (1995) Assignment of the 5HT7 receptor gene (HTR7) to chromosome 10q and exclusion of genetic linkage with Tourette syndrome. Genomics 26:207–209

    PubMed  CAS  Google Scholar 

  • Gellynck E, Laenen K, Andressen KW, Lintermans B, De Martelaere K, Matthys A, Levy FO, Haegeman G, Vanhoenacker P, Van Craenenbroeck K (2008) Cloning, genomic organization and functionality of 5-HT(7) receptor splice variants from mouse brain. Gene 426:23–31

    PubMed  CAS  Google Scholar 

  • Gellynck E, Andressen KW, Lintermans B, Haegeman G, Levy FO, Vanhoenacker P, Van Craenenbroeck K (2012) Biochemical and pharmacological study of N-linked glycosylation of the human serotonin 5-HT(7)a receptor. FEBS J 279:1994–2003

    PubMed  CAS  Google Scholar 

  • Geurts FJ, De Schutter E, Timmermans JP (2002) Localization of 5-HT2A, 5-HT3, 5-HT5A and 5-HT7 receptor-like immunoreactivity in the rat cerebellum. J Chem Neuroanat 24:65–74

    PubMed  CAS  Google Scholar 

  • Guscott MR, Egan E, Cook GP, Stanton JA, Beer MS, Rosahl TW, Hartmann S, Kulagowski J, McAllister G, Fone KC, Hutson PH (2003) The hypothermic effect of 5-CT in mice is mediated through the 5-HT7 receptor. Neuropharmacology 44:1031–1037

    PubMed  CAS  Google Scholar 

  • Guthrie CR, Murray AT, Franklin AA, Hamblin MW (2005) Differential agonist-mediated internalization of the human 5-hydroxytryptamine 7 receptor isoforms. J Pharmacol Exp Ther 313:1003–1010

    PubMed  CAS  Google Scholar 

  • Hamblin MW, Guthrie CR, Kohen R, Heidmann DE (1998) Gs protein-coupled serotonin receptors: receptor isoforms and functional differences. Ann N Y Acad Sci 861:31–37

    PubMed  CAS  Google Scholar 

  • Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213

    PubMed  CAS  Google Scholar 

  • Hedlund PB, Danielson PE, Thomas EA, Slanina K, Carson MJ, Sutcliffe JG (2003) No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc Natl Acad Sci USA 100:1375–1380

    PubMed  CAS  Google Scholar 

  • Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG (2005) 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol Psychiatry 58:831–837

    PubMed  CAS  Google Scholar 

  • Heidmann DE, Metcalf MA, Kohen R, Hamblin MW (1997) Four 5-hydroxytryptamine7 (5-HT7) receptor isoforms in human and rat produced by alternative splicing: species differences due to altered intron-exon organization. J Neurochem 68:1372–1381

    PubMed  CAS  Google Scholar 

  • Heidmann DE, Szot P, Kohen R, Hamblin MW (1998) Function and distribution of three rat 5-hydroxytryptamine7 (5-HT7) receptor isoforms produced by alternative splicing. Neuropharmacology 37:1621–1632

    PubMed  CAS  Google Scholar 

  • Hetman M, Kanning K, Cavanaugh JE, Xia Z (1999) Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J Biol Chem 274:22569–22580

    PubMed  CAS  Google Scholar 

  • Hobson RJ, Geng J, Gray AD, Komuniecki RW (2003) SER-7b, a constitutively active Gαs coupled 5-HT7-like receptor expressed in the Caenorhabditis elegans M4 pharyngeal motorneuron. J Neurochem 87:22–29

    PubMed  CAS  Google Scholar 

  • Hoyer D, Martin G (1997) 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology 36:419–428

    PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  • Johnson-Farley NN, Kertesy SB, Dubyak GR, Cowen DS (2005) Enhanced activation of Akt and extracellular-regulated kinase pathways by simultaneous occupancy of Gq-coupled 5-HT2A receptors and Gs-coupled 5-HT7(a) receptors in PC12 cells. J Neurochem 92:72–82

    PubMed  CAS  Google Scholar 

  • Kang H, Lee WK, Choi YH, Vukoti KM, Bang WG, Yu YG (2005) Molecular analysis of the interaction between the intracellular loops of the human serotonin receptor type 6 (5-HT6) and the alpha subunit of GS protein. Biochem Biophys Res Commun 329:684–692

    PubMed  CAS  Google Scholar 

  • Karnovsky AM, Gotow LF, McKinley DD, Piechan JL, Ruble CL, Mills CJ, Schellin KA, Slightom JL, Fitzgerald LR, Benjamin CW, Roberds SL (2003) A cluster of novel serotonin receptor 3-like genes on human chromosome 3. Gene 319:137–148

    PubMed  CAS  Google Scholar 

  • Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336:296–302

    PubMed  CAS  Google Scholar 

  • Kiel S, Bonisch H, Bruss M, Gothert M (2003) Impairment of signal transduction in response to stimulation of the naturally occurring Pro279Leu variant of the h5-HT7(a) receptor. Pharmacogenetics 13:119–126

    PubMed  CAS  Google Scholar 

  • Knight JA, Smith C, Toohey N, Klein MT, Teitler M (2009) Pharmacological analysis of the novel, rapid, and potent inactivation of the human 5-hydroxytryptamine7 receptor by risperidone, 9-OH-risperidone, and other inactivating antagonists. Mol Pharmacol 75:374–380

    PubMed  CAS  Google Scholar 

  • Krobert KA, Levy FO (2002) The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects. Br J Pharmacol 135:1563–1571

    PubMed  CAS  Google Scholar 

  • Krobert KA, Bach T, Syversveen T, Kvingedal AM, Levy FO (2001) The cloned human 5-HT7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn Schmiedebergs Arch Pharmacol 363:620–632

    PubMed  CAS  Google Scholar 

  • Krobert KA, Andressen KW, Levy FO (2006) Heterologous desensitization is evoked by both agonist and antagonist stimulation of the human 5-HT7 serotonin receptor. Eur J Pharmacol 532:1–10

    PubMed  CAS  Google Scholar 

  • Kvachnina E, Liu G, Dityatev A, Renner U, Dumuis A, Richter DW, Dityateva G, Schachner M, Voyno-Yasenetskaya TA, Ponimaskin EG (2005) 5-HT7 receptor is coupled to Gα subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology. J Neurosci 25:7821–7830

    PubMed  CAS  Google Scholar 

  • Kvachnina E, Dumuis A, Wlodarczyk J, Renner U, Cochet M, Richter DW, Ponimaskin E (2009) Constitutive Gs-mediated, but not G12-mediated, activity of the 5-hydroxytryptamine 5-HT7(a) receptor is modulated by the palmitoylation of its C-terminal domain. Biochim Biophys Acta 1793:1646–1655

    PubMed  CAS  Google Scholar 

  • Lenglet S, Louiset E, Delarue C, Vaudry H, Contesse V (2002a) Activation of 5-HT7 receptor in rat glomerulosa cells is associated with an increase in adenylyl cyclase activity and calcium influx through T-type calcium channels. Endocrinology 143:1748–1760

    PubMed  CAS  Google Scholar 

  • Lenglet S, Louiset E, Delarue C, Vaudry H, Contesse V (2002b) Involvement of T-type calcium channels in the mechanism of action of 5-HT in rat glomerulosa cells: a novel signaling pathway for the 5-HT7 receptor. Endocr Res 28:651–655

    PubMed  CAS  Google Scholar 

  • Leon-Ponte M, Ahern GP, O’Connell PJ (2007) Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109:3139–3146

    PubMed  CAS  Google Scholar 

  • Leopoldo M, Lacivita E, Berardi F, Perrone R, Hedlund PB (2011) Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther 129:120–148

    PubMed  CAS  Google Scholar 

  • Lieb K, Biersack L, Waschbisch A, Orlikowski S, Akundi RS, Candelario-Jalil E, Hull M, Fiebich BL (2005) Serotonin via 5-HT7 receptors activates p38 mitogen-activated protein kinase and protein kinase C epsilon resulting in interleukin-6 synthesis in human U373 MG astrocytoma cells. J Neurochem 93:549–559

    PubMed  CAS  Google Scholar 

  • Lin SL, Johnson-Farley NN, Lubinsky DR, Cowen DS (2003) Coupling of neuronal 5-HT7 receptors to activation of extracellular-regulated kinase through a protein kinase A-independent pathway that can utilize Epac. J Neurochem 87:1076–1085

    PubMed  CAS  Google Scholar 

  • Liu H, Irving HR, Coupar IM (2001) Expression patterns of 5-HT7 receptor isoforms in the rat digestive tract. Life Sci 69:2467–2475

    PubMed  CAS  Google Scholar 

  • Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW et al (1993) A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 11:449–458

    PubMed  CAS  Google Scholar 

  • Mahe C, Loetscher E, Dev KK, Bobirnac I, Otten U, Schoeffter P (2005) Serotonin 5-HT7 receptors coupled to induction of interleukin-6 in human microglial MC-3 cells. Neuropharmacology 49:40–47

    PubMed  CAS  Google Scholar 

  • Malmberg A, Strange PG (2000) Site-directed mutations in the third intracellular loop of the serotonin 5-HT1A receptor alter G protein coupling from Gi to Gs in a ligand-dependent manner. J Neurochem 75:1283–1293

    PubMed  CAS  Google Scholar 

  • Marin P, Becamel C, Dumuis A, Bockaert J (2012) 5-HT receptor-associated protein networks: new targets for drug discovery in psychiatric disorders? Curr Drug Targets 13:28–52

    PubMed  CAS  Google Scholar 

  • Markstein R, Matsumoto M, Kohler C, Togashi H, Yoshioka M, Hoyer D (1999) Pharmacological characterisation of 5-HT receptors positively coupled to adenylyl cyclase in the rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 359:454–459

    PubMed  CAS  Google Scholar 

  • Martin Shreeve S (2002) Identification of G-proteins coupling to the vasoactive intestinal peptide receptor VPAC1 using immunoaffinity chromatography: evidence for precoupling. Biochem Biophys Res Commun 290:1300–1307

    PubMed  CAS  Google Scholar 

  • Matthys A, Haegeman G, Van Craenenbroeck K, Vanhoenacker P (2011) Role of the 5-HT7 receptor in the central nervous system: from current status to future perspectives. Mol Neurobiol 43:228–253

    PubMed  CAS  Google Scholar 

  • Matthys A, Van Craenenbroeck K, Lintermans B, Haegeman G, Vanhoenacker P (2012) RhoBTB3 interacts with the 5-HT7a receptor and inhibits its proteasomal degradation. Cell Signal 24:1053–1063

    PubMed  CAS  Google Scholar 

  • Meneses A (2004) Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task. Behav Brain Res 155:275–282

    PubMed  CAS  Google Scholar 

  • Meyerhof W, Obermuller F, Fehr S, Richter D (1993) A novel rat serotonin receptor: primary structure, pharmacology, and expression pattern in distinct brain regions. DNA Cell Biol 12:401–409

    PubMed  CAS  Google Scholar 

  • Milligan G (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158:5–14

    PubMed  CAS  Google Scholar 

  • Monk SA, Williams JM, Hope AG, Barnes NM (2004) Identification and importance of N-glycosylation of the human 5-hydroxytryptamine3A receptor subunit. Biochem Pharmacol 68:1787–1796

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, McIntosh HH, Houston DB, Howlett AC (2000) The CB1 cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain. Mol Pharmacol 57:162–170

    PubMed  CAS  Google Scholar 

  • Nelson CS, Cone RD, Robbins LS, Allen CN, Adelman JP (1995) Cloning and expression of a 5HT7 receptor from Xenopus laevis. Receptors Channels 3:61–70

    PubMed  CAS  Google Scholar 

  • Nielsen MD, Chan GC, Poser SW, Storm DR (1996) Differential regulation of type I and type VIII Ca2+-stimulated adenylyl cyclases by Gi-coupled receptors in vivo. J Biol Chem 271:33308–33316

    PubMed  CAS  Google Scholar 

  • Niesler B, Walstab J, Combrink S, Moller D, Kapeller J, Rietdorf J, Bonisch H, Gothert M, Rappold G, Bruss M (2007) Characterization of the novel human serotonin receptor subunits 5-HT3C,5-HT3D, and 5-HT3E. Mol Pharmacol 72:8–17

    PubMed  CAS  Google Scholar 

  • Norum JH, Hart K, Levy FO (2003) Ras-dependent ERK activation by the human Gs-coupled serotonin receptors 5-HT4(b) and 5-HT7(a). J Biol Chem 278:3098–3104

    PubMed  CAS  Google Scholar 

  • Norum JH, Methi T, Mattingly RR, Levy FO (2005) Endogenous expression and protein kinase A-dependent phosphorylation of the guanine nucleotide exchange factor Ras-GRF1 in human embryonic kidney 293 cells. FEBS J 272:2304–2316

    PubMed  CAS  Google Scholar 

  • Obosi LA, Hen R, Beadle DJ, Bermudez I, King LA (1997) Mutational analysis of the mouse 5-HT7 receptor: importance of the third intracellular loop for receptor-G-protein interaction. FEBS Lett 412:321–324

    PubMed  CAS  Google Scholar 

  • Page IH, Rapport MM, Green AA (1948) The crystallization of serotonin. J Lab Clin Med 33:1606

    PubMed  CAS  Google Scholar 

  • Parker LL, Backstrom JR, Sanders-Bush E, Shieh BH (2003) Agonist-induced phosphorylation of the serotonin 5-HT2C receptor regulates its interaction with multiple PDZ protein 1. J Biol Chem 278:21576–21583

    PubMed  CAS  Google Scholar 

  • Perez-Garcia GS, Meneses A (2005) Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task. Behav Brain Res 163:136–140

    PubMed  CAS  Google Scholar 

  • Perez-Garcia GS, Meneses A (2009) Memory time-course: mRNA 5-HT1A and 5-HT7 receptor. Behav Brain Res 202:102–113

    PubMed  CAS  Google Scholar 

  • Peroutka SJ, Snyder SH (1983) Multiple serotonin receptors and their physiological significance. Fed Proc 42:213–217

    PubMed  CAS  Google Scholar 

  • Pierce KL, Luttrell LM, Lefkowitz RJ (2001) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20:1532–1539

    PubMed  CAS  Google Scholar 

  • Plassat JL, Amlaiky N, Hen R (1993) Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase. Mol Pharmacol 44:229–236

    PubMed  CAS  Google Scholar 

  • Rapport MM, Green AA, Page IH (1948) Serum vasoconstrictor, serotonin; isolation and characterization. J Biol Chem 176:1243–1251

    PubMed  CAS  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    PubMed  CAS  Google Scholar 

  • Renner U, Zeug A, Woehler A, Niebert M, Dityatev A, Dityateva G, Gorinski N, Guseva D, Abdel-Galil D, Frohlich M, Doring F, Wischmeyer E, Richter DW, Neher E, Ponimaskin EG (2012) Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J Cell Sci 125:2486–2499

    PubMed  CAS  Google Scholar 

  • Roberts AJ, Hedlund PB (2012) The 5-HT(7) receptor in learning and memory. Hippocampus 22:762–771

    PubMed  CAS  Google Scholar 

  • Roka F, Brydon L, Waldhoer M, Strosberg AD, Freissmuth M, Jockers R, Nanoff C (1999) Tight association of the human Mel1a-melatonin receptor and Gi: precoupling and constitutive activity. Mol Pharmacol 56:1014–1024

    PubMed  CAS  Google Scholar 

  • Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang JM, Schwartz JC (1993) Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci USA 90:8547–8551

    PubMed  CAS  Google Scholar 

  • Schlenstedt J, Balfanz S, Baumann A, Blenau W (2006) Am 5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera). J Neurochem 98:1985–1998

    PubMed  CAS  Google Scholar 

  • Shen Y, Monsma FJ Jr, Metcalf MA, Jose PA, Hamblin MW, Sibley DR (1993) Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 268:18200–18204

    PubMed  CAS  Google Scholar 

  • Simonin F, Karcher P, Boeuf JJ, Matifas A, Kieffer BL (2004) Identification of a novel family of G protein-coupled receptor associated sorting proteins. J Neurochem 89:766–775

    PubMed  CAS  Google Scholar 

  • Smith C, Rahman T, Toohey N, Mazurkiewicz J, Herrick-Davis K, Teitler M (2006) Risperidone irreversibly binds to and inactivates the h5-HT7 serotonin receptor. Mol Pharmacol 70:1264–1270

    PubMed  CAS  Google Scholar 

  • Soga F, Katoh N, Inoue T, Kishimoto S (2007) Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol 127:1947–1955

    PubMed  CAS  Google Scholar 

  • Speranza L, Chambery A, Di Domenico M, Crispino M, Severino V, Volpicelli F, Leopoldo M, Bellenchi GC, di Porzio U, Perrone-Capano C (2013) The serotonin receptor 7 promotes neurite outgrowth via ERK and Cdk5 signaling pathways. Neuropharmacology 67:155–167

    PubMed  CAS  Google Scholar 

  • Teitler M, Toohey N, Knight JA, Klein MT, Smith C (2010) Clozapine and other competitive antagonists reactivate risperidone-inactivated h5-HT7 receptors: radioligand binding and functional evidence for GPCR homodimer protomer interactions. Psychopharmacology 212:687–697

    PubMed  CAS  Google Scholar 

  • Thomas DR, Hagan JJ (2004) 5-HT7 receptors. Curr Drug Targets CNS Neurol Disord 3:81–90

    PubMed  CAS  Google Scholar 

  • Thomas DR, Middlemiss DN, Taylor SG, Nelson P, Brown AM (1999) 5-CT stimulation of adenylyl cyclase activity in guinea-pig hippocampus: evidence for involvement of 5-HT7 and 5-HT1A receptors. Br J Pharmacol 128:158–164

    PubMed  CAS  Google Scholar 

  • Toohey N, Klein MT, Knight J, Smith C, Teitler M (2009) Human 5-HT7 receptor-induced inactivation of forskolin-stimulated adenylate cyclase by risperidone, 9-OH-risperidone and other “inactivating antagonists”. Mol Pharmacol 76:552–559

    PubMed  CAS  Google Scholar 

  • Tsou AP, Kosaka A, Bach C, Zuppan P, Yee C, Tom L, Alvarez R, Ramsey S, Bonhaus DW, Stefanich E et al (1994) Cloning and expression of a 5-hydroxytryptamine7 receptor positively coupled to adenylyl cyclase. J Neurochem 63:456–464

    PubMed  CAS  Google Scholar 

  • Tuladhar BR, Ge L, Naylor RJ (2003) 5-HT7 receptors mediate the inhibitory effect of 5-HT on peristalsis in the isolated guinea-pig ileum. Br J Pharmacol 138:1210–1214

    PubMed  CAS  Google Scholar 

  • Turner JH, Raymond JR (2005) Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor. A putative regulator of G protein coupling and receptor phosphorylation by protein kinase C. J Biol Chem 280:30741–30750

    PubMed  CAS  Google Scholar 

  • Vanhoenacker P, Haegeman G, Leysen JE (2000) 5-HT7 receptors: current knowledge and future prospects. Trends Pharmacol Sci 21:70–77

    PubMed  CAS  Google Scholar 

  • Vasefi MS, Kruk JS, Liu H, Heikkila JJ, Beazely MA (2012) Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor beta receptor expression. Neurosci Lett 511:65–69

    PubMed  CAS  Google Scholar 

  • Vasquez C, Lewis DL (1999) The CB1 cannabinoid receptor can sequester G-proteins, making them unavailable to couple to other receptors. J Neurosci 19:9271–9280

    PubMed  CAS  Google Scholar 

  • Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    PubMed  CAS  Google Scholar 

  • Ward RJ, Jenkins L, Milligan G (2009) Selectivity and functional consequences of interactions of family A G protein-coupled receptors with neurochondrin and periplakin. J Neurochem 109:182–192

    PubMed  CAS  Google Scholar 

  • Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996) The cubic ternary complex receptor-occupancy model. III. Resurrecting efficacy. J Theor Biol 181:381–397

    PubMed  CAS  Google Scholar 

  • Welsby PJ, Carr IC, Wilkinson G, Milligan G (2002) Regulation of the avidity of ternary complexes containing the human 5-HT1A receptor by mutation of a receptor contact site on the interacting G protein alpha subunit. Br J Pharmacol 137:345–352

    PubMed  CAS  Google Scholar 

  • Whistler JL, Enquist J, Marley A, Fong J, Gladher F, Tsuruda P, Murray SR, Von Zastrow M (2002) Modulation of postendocytic sorting of G protein-coupled receptors. Science 297:615–620

    PubMed  CAS  Google Scholar 

  • Wu X, Kushwaha N, Albert PR, Penington NJ (2002) A critical protein kinase C phosphorylation site on the 5-HT1A receptor controlling coupling to N-type calcium channels. J Physiol 538:41–51

    PubMed  CAS  Google Scholar 

  • Xia Z, Storm DR (1997) Calmodulin-regulated adenylyl cyclases and neuromodulation. Curr Opin Neurobiol 7:391–396

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Janssen Pharmaceutica N.V., Beerse, the IWT (Instituut voor de aanmoediging van innovatie door wetenschap en technologie in Vlaanderen) project no. 990173, FWO (Fonds voor wetenschappelijk onderzoek Vlaanderen; KVC has a postdoctoral FWO scholarship), the Norwegian Research Council and The Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen Van Craenenbroeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gellynck, E., Heyninck, K., Andressen, K.W. et al. The serotonin 5-HT7 receptors: two decades of research. Exp Brain Res 230, 555–568 (2013). https://doi.org/10.1007/s00221-013-3694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3694-y

Keywords

Navigation