Skip to main content
Log in

Effect of acute and chronic bilateral visual deafferentation on c-Fos immunoreactivity in the visual system of adult rats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In our study we examined acute and chronic changes in c-Fos expression patterns in the visual system of the rat after complete visual deafferentation. In 20 male Lewis rats, the retro-bulbar part of the optic nerve was sectioned bilaterally. Ten animals underwent c-Fos immunohistochemistry after 3 days and 10 animals after 3 weeks examining time-dependent changes. The control group consisted of 10 animals, which did not undergo any surgical manipulation. c-Fos expression in the rat visual system experienced significant changes after acute and chronic bilateral complete visual deafferentation. Acute decrease in c-Fos level was observed in the ventral lateral geniculate nucleus, intergeniculate leaflet, superficial gray layer of the superior colliculus and layers IV and V of the primary visual cortex. After chronic deafferentation, c-Fos expression was also found to be decreased in the optic and deep layers of the superior colliculus and layer VI of the primary visual cortex. No change in c-Fos expression was observed in the dorsal lateral geniculate nucleus and layers I, II and III of the primary visual cortex. This work shows that secondary complete blindness does not lead to uniform decrease in c-Fos levels in all subcortical and cortical brain regions related to vision. These findings provide important information concerning expression of the immediate-early gene product c-Fos in secondary blind rodent models. It may further serve as a relevant baseline finding when electrical stimulation of the visual system is performed, aiding the assessment of visual neuroprosthesis using c-Fos as a functional mapping tool when evaluating different stimulus parameters in blind rodent models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DAB:

Diaminobenzidine

DGN:

Dorsal lateral geniculate nucleus

Dp:

Deep layers of the superior colliculus

IGL:

Intergeniculate leaflet

LGN:

Lateral geniculate nucleus

mRNA:

Messenger ribonucleic acid

Op:

Optic layer of the superior colliculus

PBS:

Phosphate-buffered saline

PBST:

Phosphate-buffered saline with Triton X-100

SC:

Superior colliculus

SCN:

Suprachiasmatic hypothalamic nucleus

SuGr:

Superficial gray layer of the superior colliculus

VGN:

Ventral lateral geniculate nucleus

VGN_M:

Magnocellular division of the ventral lateral geniculate nucleus

VGN_P:

Parvocellular division of the ventral lateral geniculate nucleus

References

  • Amir S, Robinson B (1996) Fos expression in rat visual cortex induced by ocular input of ultraviolet light. Brain Res 716:213–218

    Article  PubMed  CAS  Google Scholar 

  • Arckens L, Van der Gucht E, Eysel UT, Orban GA, Vandesande F (2000) Investigation of cortical reorganization in area 17 and nine extrastriate visual areas through the detection of changes in immediate early gene expression as induced by retinal lesions. J Comp Neurol 425:531–544

    Article  PubMed  CAS  Google Scholar 

  • Bak M, Girvin JP, Hambrecht FT, Kufta CV, Loeb GE, Schmidt EM (1990) Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput 28:257–259

    Article  PubMed  CAS  Google Scholar 

  • Beaule C, Amir S (1999) Photic entrainment and induction of immediate-early genes within the rat circadian system. Brain Res 821:95–100

    Article  PubMed  CAS  Google Scholar 

  • Beaver CJ, Mitchell DE, Robertson HA (1993) Immunohistochemical study of the pattern of rapid expression of c-Fos protein in the visual cortex of dark-reared kittens following initial exposure to light. J Comp Neurol 333:469–484

    Article  PubMed  CAS  Google Scholar 

  • Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493

    PubMed  CAS  Google Scholar 

  • Brindley GS, Rushton D (1974) Implanted stimulator of the visual cortex as visual prosthetic devices. Trans Am Acad Ophthalmol Otolaryngol 78:741–745

    Google Scholar 

  • Brown MC, Liu TS (1995) Fos-like immunoreactivity in central auditory neurons of the mouse. J Comp Neurol 357:85–97

    Article  PubMed  CAS  Google Scholar 

  • Chambille I, Doyle S, Serviere J (1993) Photic induction and circadian expression of Fos-like protein. Immunohistochemical study in the retina and suprachiasmatic nuclei of hamster. Brain Res 612:138–150

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri A, Cynader MS (1993) Activity-dependent expression of the transcription factor Zif268 reveals ocular dominance columns in monkey visual cortex. Brain Res 605:349–353

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri A, Matsubara JA, Cynader MS (1995) Neuronal activity in primate visual cortex assessed by immunostaining for the transcription factor Zif268. Vis Neurosci 12:35–50

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury V, Morley JW, Coroneo MT (2004) Surface stimulation of the brain with a prototype array for a visual cortex prosthesis. J Clin Neurosci 11:750–755

    Article  PubMed  Google Scholar 

  • Correa-Lacarcel J, Pujante MJ, Terol FF, Almenar-Garcia V, Puchades-Orts A, Ballesta JJ, Lloret J, Robles JA, Sanchez-del-Campo F (2000) Stimulus frequency affects c-fos expression in the rat visual system. J Chem Neuroanat 18:135–146

    Article  PubMed  CAS  Google Scholar 

  • Craner SL, Hoffman GE, Lund JS, Humphrey AL, Lund RD (1992) cFos labelling in rat superior colliculus: activation by normal retinal pathways and pathways from intracranial retinal transplants. Exp Neurol 117:219–229

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Sun XH (2005) Expression of immediate early gene c-fos in the lateral geniculate nucleus of rats with optic nerve injury. Zhonghua Yan Ke Za Zhi 41:321–324

    PubMed  CAS  Google Scholar 

  • Dai Y, Sun X, Chen Q (2009) Differential induction of c-Fos and c-Jun in the lateral geniculate nucleus of rats following unilateral optic nerve injury with contralateral retinal blockade. Exp Brain Res 193(1):9–18

    Article  PubMed  CAS  Google Scholar 

  • de Felipe C, Jenkins R, O’Shea R, Williams TS, Hunt SP (1993) The role of immediate early genes in the regeneration of the central nervous system. Adv Neurol 59:263–271

    PubMed  Google Scholar 

  • Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576

    PubMed  CAS  Google Scholar 

  • Dreher B, Sefton AJ, Ni SY, Nisbett G (1985) The morphology, number, distribution and central projections of Class I retinal ganglion cells in albino and hooded rats. Brain Behav Evol 26:10–48

    Article  PubMed  CAS  Google Scholar 

  • Edelstein K, Amir S (1996) Constant light induces persistent Fos expression in rat intergeniculate leaflet. Brain Res 731:221–225

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez D, Satriotomo I, Miki T, Lee KY, Yokoyama T, Touge T, Matsumoto Y, Li HP, Kuriyama S, Takeuchi Y (2005) Effects of monocular enucleation on calbindin-D 28k and c-Fos expression in the lateral geniculate nucleus in rats. Okajimas Folia Anat Jpn 82:9–18

    Article  PubMed  Google Scholar 

  • Gudehithlu KP, Neff NH, Hadjiconstantinou M (1993) c-fos and NGFI-A mRNA of rat retina: evidence for light-induced augmentation and a role for cholinergic and glutamate receptors. Brain Res 631:77–82

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW, Sherman SM (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33:163–175

    Article  PubMed  CAS  Google Scholar 

  • Hambrecht FT (1973) The current status of visual prostheses. Am J Ophthalmol 76:161–163

    PubMed  CAS  Google Scholar 

  • Harrington ME, Rusak B (1989) Photic responses of geniculo-hypothalamic tract neurons in the Syrian hamster. Vis Neurosci 2:367–375

    Article  PubMed  CAS  Google Scholar 

  • Harting JK, Hall WC, Diamond IT, Martin GF (1973) Anterograde degeneration study of the superior colliculus in Tupaia glis: evidence for a subdivision between superficial and deep layers. J Comp Neurol 148:361–386

    Article  PubMed  CAS  Google Scholar 

  • Hayhow WR, Sefton A, Webb C (1962) Primary optic centers of the rat in relation to the terminal distribution of the crossed and uncrossed optic nerve fibers. J Comp Neurol 118:295–321

    Article  PubMed  CAS  Google Scholar 

  • Herdegen T, Sandkuhler J, Gass P, Kiessling M, Bravo R, Zimmermann M (1993) JUN, FOS, KROX, and CREB transcription factor proteins in the rat cortex: basal expression and induction by spreading depression and epileptic seizures. J Comp Neurol 333:271–288

    Article  PubMed  CAS  Google Scholar 

  • Herdegen T, Kovary K, Buhl A, Bravo R, Zimmermann M, Gass P (1995) Basal expression of the inducible transcription factors c-Jun, JunB, JunD, c-Fos, FosB, and Krox-24 in the adult rat brain. J Comp Neurol 354:39–56

    Article  PubMed  CAS  Google Scholar 

  • Herzog M, Nakamura M, Burda H, Oelschläger HA (1996) Fos-like immunoreactivity mapping of the visual system in rats. Eur J Neurosci Suppl 9

  • Hickey TL, Spear PD (1976) Retinogeniculate projections in hooded and albino rats: an autoradiographic study. Exp Brain Res 24:523–529

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek L (1993) Molecular biology of vertebrate learning: is c-fos a new beginning? J Neurosci Res 34:377–381

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Brain Res Rev 23:237–256

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek L, Nikolajew E (1990) c-fos protooncogene expression and neuronal plasticity. Acta Neurobiol Exp (Wars) 50:173–179

    CAS  Google Scholar 

  • Kaplan IV, Guo Y, Mower GD (1996) Immediate early gene expression in cat visual cortex during and after the critical period: differences between EGR-1 and Fos proteins. Brain Res Mol Brain Res 36:12–22

    Article  PubMed  CAS  Google Scholar 

  • Koistinaho J, Sagar SM (1995) Light-induced c-fos expression in amacrine cells in the rabbit retina. Brain Res Mol Brain Res 29:53–63

    Article  PubMed  CAS  Google Scholar 

  • Koistinaho J, Swanson RA, de Vente J, Sagar SM (1993) NADPH-diaphorase (nitric oxide synthase)-reactive amacrine cells of rabbit retina: putative target cells and stimulation by light. Neuroscience 57:587–597

    Article  PubMed  CAS  Google Scholar 

  • Legg CR, Cowey A (1977) The role of the ventral lateral geniculate nucleus and posterior thalamus in intensity discrimination in rats. Brain Res 123:261–273

    Article  PubMed  CAS  Google Scholar 

  • Linden R, Perry VH (1983) Massive retinotectal projection in rats. Brain Res 272:145–149

    Article  PubMed  CAS  Google Scholar 

  • Mallo G, Goldstein J, Lopez-Costa JJ, Saavedra JP (1995) Expression of c-fos and c-jun in rat retina following protracted illumination. Brain Res 693:196–200

    Article  PubMed  CAS  Google Scholar 

  • Montero VM (1997) c-fos induction in sensory pathways of rats exploring a novel complex environment: shifts of active thalamic reticular sectors by predominant sensory cues. Neuroscience 76:1069–1081

    Article  PubMed  CAS  Google Scholar 

  • Montero VM, Jian S (1995) Induction of c-fos protein by patterned visual stimulation in central visual pathways of the rat. Brain Res 690:189–199

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Card JP (1994) Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol 344:403–430

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1995) Immediate-early genes: ten years on. Trends Neurosci 18:66–67

    Article  PubMed  CAS  Google Scholar 

  • Mower GD (1994) Differences in the induction of Fos protein in cat visual cortex during and after the critical period. Brain Res Mol Brain Res 21:47–54

    Article  PubMed  CAS  Google Scholar 

  • Nagase S, Miller JM, Dupont J, Lim HH, Sato K, Altschuler RA (2000) Changes in cochlear electrical stimulation induced Fos expression in the rat inferior colliculus following deafness. Hear Res 147:242–250

    Article  PubMed  CAS  Google Scholar 

  • Nakadate K, Imamura K, Watanabe Y (2012) Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein. Neuroscience 202:17–28

    Google Scholar 

  • Nakamura M, Rosahl SK, Alkahlout E, Gharabaghi A, Walter GF, Samii M (2003) c-Fos immunoreactivity mapping of the auditory system after electrical stimulation of the cochlear nerve in rats. Hear Res 184:75–81

    Article  PubMed  Google Scholar 

  • Nir I, Agarwal N (1993) Diurnal expression of c-fos in the mouse retina. Brain Res Mol Brain Res 19:47–54

    Article  PubMed  CAS  Google Scholar 

  • Normann RA, Greger B, House P, Romero SF, Pelayo F, Fernandez E (2009) Toward the development of a cortically based visual neuroprosthesis. J Neural Eng 6:035001. doi:10.1088/1741-2560/6/3-035001

    Google Scholar 

  • Ohki K, Yoshida K, Harada T, Takamura M, Matsuda H, Imaki J (1996) c-fos gene expression in postnatal rat retinas with light/dark cycle. Vision Res 36:1883–1886

    Article  PubMed  CAS  Google Scholar 

  • Okuno H, Miyashita Y (1996) Expression of the transcription factor Zif268 in the temporal cortex of monkeys during visual paired associate learning. Eur J Neurosci 8:2118–2128

    Article  PubMed  CAS  Google Scholar 

  • Park HT, Baek SY, Kim BS, Kim JB, Kim JJ (1993) Profile of Fos-like immunoreactivity induction by light stimuli in the intergeniculate leaflet is different from that of the suprachiasmatic nucleus. Brain Res 610:334–339

    Article  PubMed  CAS  Google Scholar 

  • Peters RV, Aronin N, Schwartz WJ (1996) c-Fos expression in the rat intergeniculate leaflet: photic regulation, co-localization with Fos-B, and cellular identification. Brain Res 728:231–241

    Article  PubMed  CAS  Google Scholar 

  • Prichard JR, Stoffel RT, Quimby DL, Obermeyer WH, Benca RM, Behan M (2002) Fos immunoreactivity in rat subcortical visual shell in response to illuminance changes. Neuroscience 114:781–793

    Article  PubMed  CAS  Google Scholar 

  • Ribak CE, Peters A (1975) An autoradiographic study of the projections from the lateral geniculate body of the rat. Brain Res 92:341–368

    Article  PubMed  CAS  Google Scholar 

  • Rocha MJ, Herbert H (1997) Effects of anesthetics on Fos protein expression in autonomic brain nuclei related to cardiovascular regulation. Neuropharmacology 36:1779–1781

    Article  PubMed  CAS  Google Scholar 

  • Rosen KM, McCormack MA, Villa-Komaroff L, Mower GD (1992) Brief visual experience induces immediate early gene expression in the cat visual cortex. Proc Natl Acad Sci USA 89:5437–5441

    Article  PubMed  CAS  Google Scholar 

  • Rusak B, Meijer JH, Harrington ME (1989) Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculo-hypothalamic tract. Brain Res 493:283–291

    Article  PubMed  CAS  Google Scholar 

  • Sagar SM, Sharp FR (1990) Light induces a Fos-like nuclear antigen in retinal neurons. Brain Res Mol Brain Res 7:17–21

    Article  PubMed  CAS  Google Scholar 

  • Saito H, Miller JM, Pfingst BE, Altschuler RA (1999) Fos-like immunoreactivity in the auditory brainstem evoked by bipolar intracochlear electrical stimulation: effects of current level and pulse duration. Neuroscience 91:139–161

    Article  PubMed  CAS  Google Scholar 

  • Sharp FR, Sagar SM, Swanson RA (1993) Metabolic mapping with cellular resolution: c-fos vs. 2-deoxyglucose. Crit Rev Neurobiol 7:205–228

    PubMed  CAS  Google Scholar 

  • Soares JG, Pereira AC, Botelho EP, Pereira SS, Fiorani M, Gattass R (2005) Differential expression of Zif268 and c-Fos in the primary visual cortex and lateral geniculate nucleus of normal Cebus monkeys and after monocular lesions. J Comp Neurol 482:166–175

    Article  PubMed  CAS  Google Scholar 

  • Stein BE (1981) Organization of the rodent superior colliculus: some comparisons with other mammals. Behav Brain Res 3:175–188

    Article  PubMed  CAS  Google Scholar 

  • Sumitomo I, Sugitani M, Fukuda Y, Iwama K (1979) Properties of cells responding to visual stimuli in the rat ventral lateral geniculate nucleus. Exp Neurol 66:721–736

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Cowan WM, Jones EG (1974) An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. J Comp Neurol 156:143–163

    Article  PubMed  CAS  Google Scholar 

  • Tölle TR, Castro-Lopes JM, Coimbra A, Zieglgänsberger W (1990) Opiates modify induction of c-fos proto-oncogene in the spinal cord of the rat following noxious stimulation. Neurosci Lett 111:46–51

    Article  PubMed  Google Scholar 

  • Vischer MW, Hausler R, Rouiller EM (1994) Distribution of Fos-like immunoreactivity in the auditory pathway of the Sprague-Dawley rat elicited by cochlear electrical stimulation. Neurosci Res 19:175–185

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kawamura K, Imaki J (1993) Differential expression of c-fos mRNA in rat retinal cells: regulation by light/dark cycle. Neuron 10:1049–1054

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Imaki J, Matsuda H, Hagiwara M (1995) Light-induced CREB phosphorylation and gene expression in rat retinal cells. J Neurochem 65:1499–1504

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Imaki J, Fujisawa H, Harada T, Ohki K, Matsuda H, Hagiwara M (1996) Differential distribution of CaM kinases and induction of c-fos expression by flashing and sustained light in rat retinal cells. Invest Ophthalmol Vis Sci 37:174–179

    PubMed  CAS  Google Scholar 

  • Zhang F, Vanduffel W, Schiffmann SN, Mailleux P, Arckens L, Vandesande F, Orban GA, Vanderhaeghen JJ (1995) Decrease of zif-268 and c-fos and increase of c-jun mRNA in the cat areas 17, 18 and 19 following complete visual deafferentation. Eur J Neurosci 7:1292–1296

    Article  PubMed  CAS  Google Scholar 

  • Zhang JS, Haenggeli CA, Tempini A, Vischer MW, Moret V, Rouiller EM (1996) Electrically induced fos-like immunoreactivity in the auditory pathway of the rat: effects of survival time, duration, and intensity of stimulation. Brain Res Bull 39:75–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to S. Lindemann, Ph.D., for his excellent assistance in the experiment. This work was supported by grants of the International Neurobionic Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All experiments were conducted under an Institutional Animal Care and Use Committee-approved protocol in accordance with the EU Directive 86/609/EEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiedmann, R., Rosahl, S.K., Brinker, T. et al. Effect of acute and chronic bilateral visual deafferentation on c-Fos immunoreactivity in the visual system of adult rats. Exp Brain Res 229, 595–607 (2013). https://doi.org/10.1007/s00221-013-3623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3623-0

Keywords

Navigation