Experimental Brain Research

, Volume 229, Issue 1, pp 85–96 | Cite as

The interactive effects of physical fitness and acute aerobic exercise on electrophysiological coherence and cognitive performance in adolescents

  • Michael Hogan
  • Markus Kiefer
  • Sabine Kubesch
  • Peter Collins
  • Liam Kilmartin
  • Méadhbh Brosnan
Research Article

Abstract

The current study examined the effects of physical fitness and aerobic exercise on cognitive functioning and coherence of the electroencephalogram in 30 adolescents between the ages of 13 and 14 years. Participants were first classified as fit or unfit and then performed a modified Eriksen flanker task after a bout of acute exercise and after a period of relaxation. Analysis of behavioural differences between the fit and unfit groups revealed an interaction between fitness levels and acute physical exercise. Specifically, fit participants had significantly faster reaction times in the exercise condition in comparison with the rest condition; unfit, but not fit, participants had higher error rates for NoGo relative to Go trials in the rest condition. Furthermore, unfit participants had higher levels of lower alpha, upper alpha, and beta coherence in the resting condition for NoGo trials, possibly indicating a greater allocation of cognitive resources to the task demands. The higher levels of alpha coherence are of particular interest in light of its reported role in inhibition and effortful attention. The results suggest that physical fitness and acute exercise may enhance cognition by increasing the efficacy of the attentional system.

Keywords

EEG Coherence Fitness Exercise Cognitive performance 

References

  1. Armstrong N, Welsman JR (2007) Aerobic fitness: what are we measuring? Med Sport Sci 50:5–25. doi:10.1159/000101073 PubMedCrossRefGoogle Scholar
  2. Bailey PB, Hall EE, Folger SE, Miller PC (2008) Changes in EEG during graded exercise on a recumbent cycle ergometer. J Sports Sci Med 7:505–511Google Scholar
  3. Boutcher SH (1993) Emotion and aerobic exercise. In: Singer RN, Murphey M, Tennant LK (eds) Handbook of research on sport psychology. MacMillan, New York, pp 799–814Google Scholar
  4. Chang YK, Laban JD, Gapin JI, Etnier JL (2012) The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res 1458:87–101. doi:/10.1016/j.brainres.2012.02.068 CrossRefGoogle Scholar
  5. Churchill JD, Galvez R, Colcombe S, Swain RA, Kramer AF, Greenough WT (2002) Exercise, experience and the aging brain. Neurobiol Aging 23(5):941–955. doi:10.1016/S0197-4580(02)00028-3 PubMedCrossRefGoogle Scholar
  6. Colcombe SJ, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14(2):125–130. doi:10.1111/1467-9280.t01-1-01430 PubMedCrossRefGoogle Scholar
  7. Colcombe SJ, Kramer AF, Erickson KL, Scalf P, McAuley E, Cohen NJ et al (2004) Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci USA 101:3316–3321. doi:10.1073/pnas.0400266101 PubMedCrossRefGoogle Scholar
  8. Collins P, Hogan MJ, Kilmartin L, Keane M, Kaiser J, Fischer K (2010) Electrophysiological coherence and learning: distinct patterns of change during word learning and figure learning tasks. Mind Brain Educ 4:208–218. doi:10.1111/j.1751-228X.2010.01100.x CrossRefGoogle Scholar
  9. Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301. doi:10.1016/S0166-2236(02)02143-4 PubMedCrossRefGoogle Scholar
  10. Davis CL, Tomporowski PD, Boyle CA, Waller JL, Miller PH, Naglieri JA et al (2007) Effects of aerobic exercise on overweight children’s cognitive functioning: a randomized controlled trial. Res Q Exerc Sport 78(5):510–519. doi:10.5641/193250307X13082512817660 PubMedGoogle Scholar
  11. Davranche K, Audiffren M (2004) Facilitating effects of exercise on information processing. J Sports Sci 22:419–428. doi:10.1080/02640410410001675289 PubMedCrossRefGoogle Scholar
  12. Deeny S, Hillman CH, Janelle CM, Hatfield BD (2003) Cortico-cortical communication and superior performance in skilled marksman: an EEG coherence analysis. J Sport Exerc Psychol 25:188–204Google Scholar
  13. Deeny SP, Haufler AJ, Saffer M, Hatfield BD (2009) Electroencephalographic coherence during visuomotor performance: a comparison of cortico-cortical communication in experts and novices. J Mot Behav 41(2):106–116. doi:10.3200/JMBR.41.2.106-116 PubMedCrossRefGoogle Scholar
  14. Demiralp T, Bayraktaroglu Z, Lenz D, Junge S, Busch NA, Maess B, Ergena M, Herrmannb MS (2007) Gamma amplitudes are coupled EEG during visual to theta phase in human perception. Int J Psychophysiol 64:24–30. doi:10.1016/j.ijpsycho.2006.07.005 PubMedCrossRefGoogle Scholar
  15. Diamond A, Taylor C (1996) Development of an aspect of executive control: development of the abilities to remember what I say and to “do as I say, not as I do”. Dev Psychobiol 29:315–334. doi:10.1002/(SICI)1098-2302(199605)29:4<315:AID-DEV2>3.3.CO;2-C PubMedCrossRefGoogle Scholar
  16. Dierks T, Jelic V, Pascual-Marqui RD, Wahlund LO, Julin P, Linden DEJ (2000) Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clin Neurophysiol 111:1817–1824. doi:10.1016/S1388-2457(00)00427-2 PubMedCrossRefGoogle Scholar
  17. Endres M, Gertz K, Lindauer U, Katchanov J, Schultze J, Schrock H et al (2003) Mechanisms of stroke protection by physical activity. Ann Neurol 54(5):582–590. doi:10.1002/ana.10722 PubMedCrossRefGoogle Scholar
  18. Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16:143–149. doi:10.3758/BF03203267 CrossRefGoogle Scholar
  19. Herrmann CS, Fründ I, Lenz D (2010) Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev 34:981–992. doi:10.1016/j.neubiorev.2009.09.001 PubMedCrossRefGoogle Scholar
  20. Hillman CH, Castelli D, Buck SM (2005) Aerobic fitness and neurocognitive function in healthy preadolescent children. Med Sci Sports Exercise 37:1967–1974. doi:10.1249/01.mss.0000176680.79702.ce CrossRefGoogle Scholar
  21. Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9(1):58–65. doi:10.1038/nrn2298 PubMedCrossRefGoogle Scholar
  22. Hillman CH, Pontifex MB, Raine LB, Castelli DM, Hall EE, Kramer AF (2009) The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 3:1044–1054CrossRefGoogle Scholar
  23. Hinkle JS, Tuckman BW, Sampson JP (1993) The psychology, physiology, and the creativity of middle school aerobic exercises. Elem Sch Guid Couns 28(2):133–145Google Scholar
  24. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387(2):167–178. doi:10.1002/(SICI)1096-9861(19971020)387 PubMedCrossRefGoogle Scholar
  25. Jensen O, Kaiser J, Lachaux JP (2007) Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 30:317–324. doi:10.1016/j.tins.2007.05.001 PubMedCrossRefGoogle Scholar
  26. Jiang Z, Zheng L (2006) Inter- and intra-hemispheric EEG coherence in patients with mild cognitive impairment at rest and during memory working task. J Zhejiang Univ Sci B 7(5):357–364. doi:10.1631/jzus.2006.B0357 PubMedCrossRefGoogle Scholar
  27. Jokisch D, Jensen O (2007) Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci 27(12):3244–3251. doi:10.1523/JNEUROSCI.5399-06.2007 PubMedCrossRefGoogle Scholar
  28. Kiefer M, Marzinzik F, Weisbrod M, Scherg M, Spitzer M (1998) The time course of brain activations during response inhibition: evidence from event-related potentials in a Go/Nogo task. NeuroReport 9:765–770. doi:10.1097/00001756-199803090-00037 PubMedCrossRefGoogle Scholar
  29. Kiefer M, Ahlegian M, Spitzer M (2005) Working memory capacity, indirect semantic priming and stroop interference: pattern of interindividual prefrontal performance differences in healthy volunteers. Neuropsych 19:332–344. doi:10.1037/0894-4105.19.3.332 CrossRefGoogle Scholar
  30. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195. doi:10.1016/S0165-0173(98)00056-3 PubMedCrossRefGoogle Scholar
  31. Lardon MT, Polich J (1996) EEG changes from long-term physical exercise. Biol Psychol 44(1):19–30. doi:10.1016/S0301-0511(96)05198-8 PubMedCrossRefGoogle Scholar
  32. Llorens-Martín M, Torres-Alemán I, Trejo JL (2006) Pronounced individual variation in the response to the stimulatory action of exercise on immature hippocampal neurons. Hippocampus 16:480–490. doi:10.1002/hipo.20175 PubMedCrossRefGoogle Scholar
  33. Lou SJ, Liu JY, Chang H, Chen PJ (2008) Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res 1210:48–55. doi:10.1016/j.brainres.2008.02.080 PubMedCrossRefGoogle Scholar
  34. Moraes H, Ferreira C, Deslandes A, Cagy M, Pompeu F, Ribeiro P, Piedade R (2007) Beta and alpha electroencephalographic activity changes after acute exercise. Arq Neuropsiquiatr 65(3A):637–641. doi:10.1590/S0004-282X2007000400018 PubMedCrossRefGoogle Scholar
  35. Mormann F, Fell J, Axmacher N, Weber B, Lehnertz K, Elger CE, Fernández G (2005) Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus 15:890–900. doi:10.1002/hipo.20117 PubMedCrossRefGoogle Scholar
  36. Neeper SA et al (1995) Exercise and brain neurotrophins. Nature 373:109. doi:10.1038/373109a0 PubMedCrossRefGoogle Scholar
  37. Norman DA, Shallice T (1986) Attention to action: willed and automatic control of behavior. In: Davidson RJ, Schwartz GE, Shapiro D (eds) Consciousness and self-regulation: advances in research and theory, vol 4. Plenum, New York, pp 1–18CrossRefGoogle Scholar
  38. Nunez P (1981) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York. doi:10.1063/1.2915137 Google Scholar
  39. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM et al (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104(13):5638–5643. doi:10.1073/pnas.0611721104 PubMedCrossRefGoogle Scholar
  40. Petruzzello SJ, Landers DM (1994) State anxiety reduction and exercise: does hemispheric activation reflect such changes? Med Sci Sports Exerc 26:1028–1035. doi:10.1249/00005768-199408000-00015 PubMedGoogle Scholar
  41. Polich J (1987) Task difficulty, probability, and inter-stimulus interval as determinants of P300 from auditory stimuli. Electroencephalogr Clin Neurophysiol 68:311–320Google Scholar
  42. Ridderinkhof KR, van der Molen MW (1995) A psychophysiological analysis of developmental differences in the ability to resist interference. Child Dev 66:1040–1056. doi:10.2307/1131797 CrossRefGoogle Scholar
  43. Rieder MK, Rahm B, Williams JD, Kaiser J (2011) Human gamma-band activity and behavior. Int J Psychophysiol 79:39–48. doi:10.1016/j.ijpsycho.2010.08.010 PubMedCrossRefGoogle Scholar
  44. Royall DR, Lauterbach EC, Cummings JL, Reeve A, Rummans TA, Kaufer DI et al (2002) Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci 14(4):377–405. doi:10.1176/appi.neuropsych.14.4.377 PubMedCrossRefGoogle Scholar
  45. Ruchsow M, Herrnberger B, Wiesend C, Gron G, Spitzer M, Kiefer M (2004) The effect of erroneous responses on response monitoring in patients with major depressive disorder: a study with event-related potentials. Psychophysiology 41:833–840. doi:10.1111/j.1469-8986.2004.00237.x PubMedCrossRefGoogle Scholar
  46. Ruchsow M, Spitzer M, Grön G, Grothe J, Kiefer M (2005) Error processing and impulsiveness in normals: evidence from event-related potentials. Brain Res Cogn Brain Res 24(2):317–325Google Scholar
  47. Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, Stein AV (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci USA 95:7092–7096. doi:10.1073/pnas.95.12.7092 PubMedCrossRefGoogle Scholar
  48. Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296. doi:10.1038/nrn1650 PubMedCrossRefGoogle Scholar
  49. Sibley BA, Etnier J (2003) The relationship between physical activity and cognition in children: a meta-analysis. Pediatr Exerc Sci 15:243–256Google Scholar
  50. Stroth S, Kubesch S, Dieterle K, Ruchsow M, Heim R, Kiefer M (2009) Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Res 1269:114–124. doi:10.1016/j.brainres.2009.02.073 PubMedCrossRefGoogle Scholar
  51. Themanson JR, Hillman CH (2006) Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring. Neuroscience 141:757–767. doi:10.1016/j.neuroscience.2006.04.004 PubMedCrossRefGoogle Scholar
  52. Themanson JR, Hillman CH, Curtin JJ (2006) Age and physical activity influences on action monitoring during task switching. Neurobiol Aging 27(9):1335–1345. doi:10.1016/j.neurobiolaging.2005.07.002 PubMedCrossRefGoogle Scholar
  53. Tomporowski PD, Davis CL, Miller PH, Naglieri JA (2008) Exercise and children’s intelligence cognition, and academic achievement. Educ Psychol Rev 20:111–131. doi:10.1007/s10648-007-9057-0 PubMedCrossRefGoogle Scholar
  54. Travis F (1998) Cortical and cognitive development in 4th, 8th, and 12th grade students: the contribution of speed of processing and executive functioning to cognitive development. Bio Psych 48:37–56. doi:10.1016/S0301-0511(98)00005-2 CrossRefGoogle Scholar
  55. Tuckman BW, Hinkle JS (1986) An experimental study of the physical and psychological effects of aerobic exercise on schoolchildren. Health Psychol 5(3):197–207. doi:10.1037//0278-6133.5.3.197 PubMedCrossRefGoogle Scholar
  56. Van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999a) Running enhances neurogenesis, learning and long-term potentiation in mice. Proc Natl Acad Sci 96(23):13427–13431. doi:10.1073/pnas.96.23.13427 PubMedCrossRefGoogle Scholar
  57. Van Praag H, Kempermann G, Gage FH (1999b) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270. doi:10.1038/6368 PubMedCrossRefGoogle Scholar
  58. Vaynman S, Gomez-Pinilla F (2006) Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health though molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res 84:699–715. doi:10.1002/jnr.20979 PubMedCrossRefGoogle Scholar
  59. Wasserman K, McIlroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14:844–885. doi:10.1016/0002-9149(64)90012-8 PubMedCrossRefGoogle Scholar
  60. Weiss S, Rappelsberger P (2000) Long-range EEG synchronization during word encoding correlates with successful memory performance. Cognitive Brain Res 9(3):299–312. doi:10.1016/S0926-6410(00)00011-2 CrossRefGoogle Scholar
  61. Weiss S, Chromecek W, Rappelsberger P (1998) Electrophysiological signs for a differentiation between good and poor memory performers. Eur J Neurosci 10(Suppl):142Google Scholar
  62. Weiss S, Muller HM, Rappelsberger P (1999) Processing concepts and scenarios: electrophysiological findings on language representation. In: Riegler A, Peschl M, Stein AV (eds) Understanding representation in the cognitive sciences. Plenum, New York, pp 237–246. doi:10.1007/978-0-585-29605-0_26 Google Scholar
  63. Zervas Y, Apostolos D, Klissouras V (1991) Influence of physical exertion on mental performance with reference to training. Percept Mot Skills 73:1215–1221. doi:10.2466/pms.1991.72.3c.1215 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Hogan
    • 1
  • Markus Kiefer
    • 3
  • Sabine Kubesch
    • 4
    • 5
  • Peter Collins
    • 1
  • Liam Kilmartin
    • 2
  • Méadhbh Brosnan
    • 1
  1. 1.School of PsychologyNUIGalwayIreland
  2. 2.College of Engineering and InformaticsNUIGalwayIreland
  3. 3.Department of PsychiatryUniversity of UlmUlmGermany
  4. 4.Tranfer Center for Neuroscience and LearningUniversity of UlmUlmGermany
  5. 5.Institute Education PlusHeidelbergGermany

Personalised recommendations