Skip to main content
Log in

Neurons in the cingulate motor area signal context-based and outcome-based volitional selection of action

  • Volition
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Volitional selection of action is subject to continuous adjustment under the influence of information obtained by monitoring behavioral consequences and by exploiting behavioral context based on prior knowledge about the environment. The rostral cingulate motor area (CMAr) is thought to be responsible for adjusting behavior by monitoring its consequences. To investigate whether the CMAr also plays a role in exploitation of behavioral context in action selection, we recorded neuronal activities from the CMAr while monkeys performed a reward-based motor selection task that required them to switch from one action to the other based on the amount of reward. We examined both the behavior of monkeys and the activity of CMA neurons quantitatively by constructing a hybrid reinforcement learning model incorporating context-based and outcome-based action values into a new action value. We found that CMAr neurons encoded the context-based action value by increasing or decreasing their firing rates gradually with the number of repetitions of the same movement (i.e., behavioral context). We also found that CMAr neurons encoded the context-based and outcome-based action values in two distinct time windows at single neuron and population levels. Our findings indicate that the CMAr is involved in behavioral adjustment of action selection by exploiting the behavioral context and not merely by monitoring reward outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe H, Lee D (2011) Distributed coding of actual and hypothetical outcomes in the orbital and dorsolateral prefrontal cortex. Neuron 70:731–741

    Article  PubMed  CAS  Google Scholar 

  • Amiez C, Joseph JP, Procyk E (2005) Anterior cingulate error-related activity is modulated by predicted reward. Eur J Neurosci 21:3447–3452

    Article  PubMed  Google Scholar 

  • Behrens TEJ, Woolrich MW, Walton ME, Rushworth MFS (2007) Learning the value of information in an uncertain world. Nat Neurosci 10:1214–1221

    Article  PubMed  CAS  Google Scholar 

  • Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8:1704–1711

    Article  PubMed  CAS  Google Scholar 

  • Doya K, Samejima K, Katagiri K, Kawato M (2002) Multiple model-based reinforcement learning. Neural Comput 14:1347–1369

    Article  PubMed  Google Scholar 

  • Fujii N, Mushiake H, Tanji J (2002) Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and pre-SMA of monkeys. J Neurophysiol 87:2158–2166

    PubMed  Google Scholar 

  • Gläscher J, Daw N, Dayan P, O’Doherty JP (2010) States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66:585–595

    Article  PubMed  Google Scholar 

  • Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci 30:535–574

    Article  PubMed  CAS  Google Scholar 

  • Hadland KA, Rushworth MFS, Gaffan D, Passingham RE (2003) The anterior cingulate and reward-guided selection of actions. J Neurophysiol 89:1161–1164

    Article  PubMed  CAS  Google Scholar 

  • Hayden BY, Pearson JM, Platt ML (2009) Fictive reward signals in the anterior cingulate cortex. Science 324:948–950

    Article  PubMed  CAS  Google Scholar 

  • Hayden BY, Pearson JM, Platt ML (2011) Neuronal basis of sequential foraging decisions in a patchy environment. Nat Neurosci 14:933–939

    Article  PubMed  CAS  Google Scholar 

  • Isoda M, Hikosaka O (2007) Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci 10:240–248

    Article  PubMed  CAS  Google Scholar 

  • Jocham G, Neumann J, Klein TA, Danielmeier C, Ullsperger M (2009) Adaptive coding of action values in the human rostral cingulate zone. J Neurosci 29:7489–7496

    Article  PubMed  CAS  Google Scholar 

  • Kennerley SW, Walton ME, Behrens TEJ, Buckley MJ, Rushworth MFS (2006) Optimal decision making and the anterior cingulate cortex. Nat Neurosci 9:940–947

    Article  PubMed  CAS  Google Scholar 

  • Longo MR, Iannetti GD, Mancini F, Driver J, Haggard P (2012) Linking pain and the body: neural correlates of visually induced analgesia. J Neurosci 32:2601–2607

    Article  PubMed  CAS  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Matsumoto K, Abe H, Tanaka K (2007) Medial prefrontal cell activity signaling prediction errors of action values. Nat Neurosci 10:647–656

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaka Y, Aizawa H, Tanji J (1992) A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J Neurophysiol 68:653–662

    PubMed  CAS  Google Scholar 

  • Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working memory. Science 319:1543–1546

    Article  PubMed  CAS  Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    PubMed  CAS  Google Scholar 

  • Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869

    Article  PubMed  CAS  Google Scholar 

  • Nakahara H, Itoh H, Kawagoe R, Takikawa Y, Hikosaka O (2004) Dopamine Neurons can represent context-dependent prediction error. Neuron 41:269–280

    Article  PubMed  CAS  Google Scholar 

  • Niki H, Watanabe M (1979) Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res 171:213–224

    Article  PubMed  CAS  Google Scholar 

  • O’Doherty JP (2012) Beyond simple reinforcement learning: the computational neurobiology of reward-learning and valuation. Eur J Neurosci 35:987–990

    Article  PubMed  Google Scholar 

  • Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353

    Article  PubMed  CAS  Google Scholar 

  • Picard N, Strick PL (1997) Activation on medial wall during remembered sequences of reaching movements in monkeys. J Neurophysiol 77:2197–2201

    PubMed  CAS  Google Scholar 

  • Quilodran R, Rothe M, Procyk E (2008) Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron 57:314–325

    Article  PubMed  CAS  Google Scholar 

  • Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306:443–447

    Article  PubMed  CAS  Google Scholar 

  • Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J Neurosci 22:9475–9489

    PubMed  CAS  Google Scholar 

  • Romo R, Hernandez A, Zainos A (2004) Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron 41:165–173

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Seo H, Lee D (2007) Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game. J Neurosci 27:8366–8377

    Article  PubMed  CAS  Google Scholar 

  • Shima K, Tanji J (1998) Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282:1335–1338

    Article  PubMed  CAS  Google Scholar 

  • Shima K, Tanji J (2000) Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J Neurophysiol 84:2148–2160

    PubMed  CAS  Google Scholar 

  • Shima K, Aya K, Mushiake H, Inase M, Aizawa H, Tanji J (1991) Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements. J Neurophysiol 65:188–202

    PubMed  CAS  Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    Google Scholar 

  • Swick D, Turken AU (2002) Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proc Natl Acad Sci USA 99:16354–16359

    Article  PubMed  CAS  Google Scholar 

  • Tachibana K, Suzuki K, Mori E, Miura N, Kawashima R, Horie K, Sato S, Tanji J, Mushiake H (2009) Neural activity in the human brain signals logical rule identification. J Neurophysiol 102:1526–1537

    Article  PubMed  Google Scholar 

  • Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19:251–268

    Article  PubMed  CAS  Google Scholar 

  • Tanji J (2001) Sequential organization of multiple movements: involvement of cortical motor areas. Annu Rev Neurosci 24:631–651

    Article  PubMed  CAS  Google Scholar 

  • Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23:4308–4314

    PubMed  CAS  Google Scholar 

  • Walton ME, Devlin JT, Rushworth MFS (2004) Interactions between decision making and performance monitoring within prefrontal cortex. Nat Neurosci 7:1259–1265

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Isoda M, Matsuzaka Y, Shima K, Tanji J (2005) Prefrontal cortical cells projecting to the supplementary eye field and presupplementary motor area in the monkey. Neurosci Res 53:1–7

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Core research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST) and by Grants-in-Aid for Scientific Research, Ministry of Education, Science, and Culture, Japan (Grant No. 22300124). We thank M. Kurama and M. Takahashi for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Mushiake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwata, Ji., Shima, K., Tanji, J. et al. Neurons in the cingulate motor area signal context-based and outcome-based volitional selection of action. Exp Brain Res 229, 407–417 (2013). https://doi.org/10.1007/s00221-013-3442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3442-3

Keywords

Navigation