Experimental Brain Research

, Volume 225, Issue 2, pp 205–215 | Cite as

Using vertebral movement and intact paraspinal muscles to determine the distribution of intrafusal fiber innervation of muscle spindle afferents in the anesthetized cat

  • William R. ReedEmail author
  • Dong-Yuan Cao
  • Weiqing Ge
  • Joel G. Pickar
Research Article


Increasing our knowledge regarding intrafusal fiber distribution and physiology of paraspinal proprioceptors may provide key insights regarding proprioceptive deficits in trunk control associated with low back pain and lead to more effective clinical intervention. The use of vertebral movement as a means to reliably stretch paraspinal muscles would greatly facilitate physiological study of paraspinal muscle proprioceptors where muscle tendon isolation is either very difficult or impossible. The effects of succinylcholine (SCh) on 194 muscle spindle afferents from lumbar longissimus or multifidus muscles in response to computer-controlled, ramp-and-hold movements of the L6 vertebra were investigated in anesthetized cats. Paraspinal muscles were stretched by moving the L6 vertebra 1.5–1.7 mm in the dorsal–ventral direction. Initial frequency (IF), dynamic difference (DD), their changes (∆) following SCh injection (100–400 μg kg−1), and post-SCh dynamic difference (SChDD) were measured. Muscle spindle intrafusal fiber terminations were classified as primary or secondary fibers as well as bag1 (b1c), bag2 (b2c), b1b2c, or chain (c) fibers. Intrafusal fiber subpopulations were distinguished using logarithmic transformation of SChDD and ∆IF distributions as established by previous investigators. Increases in DD indicate strength of b1c influence while increases in IF indicate strength of b2c influence. Out of 194 afferents, 46.9 % of afferents terminated on b2c fibers, 46.4 % on b1b2c fibers, 1 % on b1c fibers, and 5.7 % terminated on c fibers. Based on these intrafusal fiber subpopulation distributions, controlled vertebral movement can effectively substitute for direct tendon stretch and allow further investigation of paraspinal proprioceptors in this anatomically complex body region.


Muscle spindle Neurophysiology Paraspinal muscles Trunk Lumbar spine Succinylcholine 



The authors thank Randall Sozio for technical work, Dr. Cyndy Long for statistical consultation, and Ying Cao for statistical assistance. This work was supported by NIH grants: NIH U19 AT004137 and NS46818 to JGP; and K01AT005935 to WRR. It was conducted in a facility constructed with support from Research Facilities Improvement Grant Number C06 RR15433 from the National Center for Research Resources, NIH.


  1. Bakker DA, Richmond FJR (1982) Muscle spindle complexes in muscles around upper cervical vertebrae in the cat. J Neurophysiol 48:62–74PubMedGoogle Scholar
  2. Bergmark A (1989) Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54PubMedGoogle Scholar
  3. Bogduk N (1976) The lumbosacral dorsal rami in the cat. J Anat 122:653–662PubMedGoogle Scholar
  4. Bogduk N (1980) The dorsal lumbar muscles of the cat. Anat Anz Jena 148:55–67Google Scholar
  5. Boyd IA (1981) The action of the three types of intrafusal fibre in isolated cat muscle spindles on the dynamic and length sensitivities of primary and secondary sensory endings. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. Oxford University Press, New York, pp 17–32Google Scholar
  6. Boyd IA (1985) Intrafusal muscle fibres in the cat and their motor control. In: Barnes WJP, Gladden MH (eds) Feedback and motor control in invertebrates and vertebrates. Croom Helm, London, pp 123–144CrossRefGoogle Scholar
  7. Brumagne S, Cordo P, Lysens R, Verschueren S, Swinnen S (2000) The role of paraspinal muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine 25:989–994PubMedCrossRefGoogle Scholar
  8. Brumagne S, Janssens L, Knapen S, Claeys K, Suuden-Johanson E (2008) Persons with recurrent low back pain exhibit a rigid postural control strategy. Eur Spine J 17:1177–1184PubMedCrossRefGoogle Scholar
  9. Cao DY, Khalsa PS, Pickar JG (2009a) Dynamic responsiveness of lumbar paraspinal muscle spindles during vertebral movement in the cat. Exp Brain Res 197:369–377PubMedCrossRefGoogle Scholar
  10. Cao DY, Pickar JG, Ge W, Ianuzzi A, Khalsa PS (2009b) Position sensitivity of feline paraspinal muscle spindles to vertebral movement in the lumbar spine. J Neurophysiol 101:1722–1729PubMedCrossRefGoogle Scholar
  11. Carr RW, Morgan DL, Proske U (1996) Impulse initiation in the mammalian muscle spindle during combined fusimotor stimulation and succinylcholine infusion. J Neurophysiol 75:1703–1713PubMedGoogle Scholar
  12. Claeys K, Brumagne S, Dankaerts W, Kiers H, Janssens L (2011) Decreased variability in postural control strategies in young people with non-specific low back pain is associated with altered proprioceptive reweighting. Eur J Appl Physiol 111:115–123PubMedCrossRefGoogle Scholar
  13. Durbaba R, Taylor A, Ellaway PH, Rawlinson S (2006) Classification of longissimus lumborum muscle spindle afferents in the anaesthetized cat. J Physiol 571:489–498PubMedCrossRefGoogle Scholar
  14. Dutia MB (1980) Activation of cat muscle spindle primary, secondary and intermediate sensory endings by suxamethonium. J Physiol 304:315–330PubMedGoogle Scholar
  15. Ge W, Long CR, Pickar JG (2005) Vertebral position alters paraspinal muscle spindle responsiveness in the feline spine: effect of positioning duration. J Physiol 569:655–665PubMedCrossRefGoogle Scholar
  16. Ge W, Cao DY, Pickar JG (2007) Resting discharge of paraspinal muscle spindles is stable under deep anesthesia using sodium pentobarbital. In: Society for Neuroscience meeting, abstract 727.14. San Diego, CAGoogle Scholar
  17. Ge W, Cao DY, Long C, Pickar JG (2011) Plane of vertebral movement eliciting muscle lengthening history in the low back influences the decrease in muscle spindle responsiveness of the cat. J Appl Physiol 111:1735–1743PubMedCrossRefGoogle Scholar
  18. Gladden M (1976) Structural features relative to the function of intrafusal muscle fibres in the cat. Prog Brain Res 44:51–59PubMedCrossRefGoogle Scholar
  19. Hald A (1952) Statistical theory with engineering applications. Wiley, New YorkGoogle Scholar
  20. Hodges P (1999) Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch Phys Med Rehabil 80:1005–1012PubMedCrossRefGoogle Scholar
  21. Hulliger M (1984) The mammalian muscles spindle and its central control. Rev Physiol Biochem Pharmacol 101:1–110PubMedCrossRefGoogle Scholar
  22. Johanson E, Brumagne S, Janssens L, Pijnenburg M, Claeys K, Paasuke M (2011) The effect of acute back muscle fatigue on postural control strategy in people with and without recurrent low back pain. Eur Spine J 20:2152–2159PubMedCrossRefGoogle Scholar
  23. Matthews PB, Watson JD (1981) Action of vibration on the response of cat muscle spindle Ia afferents to low frequency sinusoidal stretching. J Physiol 317:365–381PubMedGoogle Scholar
  24. Mileusnic MP, Brown IE, Lan N, Loeb GE (2006) Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. J Neurophysiol 96:1772–1788PubMedCrossRefGoogle Scholar
  25. Panjabi MM (1992) The stabilizing system of the spine. Part I. Function, dysfunction, adaptation and enhancement. J Spinal Disord 5:383–389PubMedCrossRefGoogle Scholar
  26. Pickar JG (1999) An in vivo preparation for investigating neural responses to controlled loading of a lumbar vertebra in the anesthetized cat. J Neurosci Methods 89:87–96PubMedCrossRefGoogle Scholar
  27. Pickar JG, Sung PS, Kang YM, Ge W (2007) Response of lumbar paraspinal muscles spindles is greater to spinal manipulative loading compared with slower loading under length control. Spine J 7:583–595PubMedCrossRefGoogle Scholar
  28. Price RF, Dutia MB (1987) Properties of cat neck muscle spindles and their excitation by succinylcholine. Exp Brain Res 68:619–630PubMedGoogle Scholar
  29. Price RF, Dutia MB (1989) Physiological properties of tandem muscle spindles in neck and hind-limb muscles. Prog Brain Res 80:47–56PubMedCrossRefGoogle Scholar
  30. Rack PMH, Westbury DR (1966) The effects of suxamethonium and acetylcholine on the behavior of cat muscle spindles during dynamic stretching and during fusimotor stimulation. J Physiol 186:698–713PubMedGoogle Scholar
  31. Reeves NP, Cholewicki J, Lee AS, Mysliwiec LW (2009a) The effects of stochastic resonance stimulation on spine proprioception and postural control in chronic low back pain patients. Spine 34:316–321PubMedCrossRefGoogle Scholar
  32. Reeves NP, Cholewicki J, Narendra KS (2009b) Effects of reflex delays on postural control during unstable seated balance. J Biomech 42:164–170PubMedCrossRefGoogle Scholar
  33. Richmond FJ, Abrahams VC (1979) Physiological properties of muscle spindles in dorsal neck muscles of the cat. J Neurophysiol 42:604–617PubMedGoogle Scholar
  34. Schafer SS (1994) Regularity in the generation of discharge patterns by primary and secondary muscle spindle afferents, as recorded under a ramp and hold stretch. Exp Brain Res 102:198–209PubMedCrossRefGoogle Scholar
  35. Scott JJ (1990) Classification of muscle spindle afferents in the peroneus brevis muscle of the cat. Brain Res 509:62–70PubMedCrossRefGoogle Scholar
  36. Sears TA (1964) Efferent discharges in alpha and fusimotor fibres of intercostal nerves of the cat. J Physiol 174:295–315PubMedGoogle Scholar
  37. Taylor A, Durbaba R, Rodgers JF (1992a) The classification of afferents from muscle spindles of the jaw-closing muscles of the cat. J Physiol 456:609–628PubMedGoogle Scholar
  38. Taylor A, Rodgers JF, Fowle AJ, Durbaba R (1992b) The effect of succinylcholine on cat gastrocnemius muscle spindle afferents of different types. J Physiol 456:629–644PubMedGoogle Scholar
  39. Taylor A, Ellaway PH, Durbaba R (1999) Why are there three types of intrafusal muscle fibers? Prog Brain Res 123:121–131PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • William R. Reed
    • 1
    Email author
  • Dong-Yuan Cao
    • 1
    • 2
  • Weiqing Ge
    • 1
    • 3
  • Joel G. Pickar
    • 1
  1. 1.Palmer Center for Chiropractic ResearchDavenportUSA
  2. 2.Department of Neural and Pain SciencesUniversity of Maryland School of DentistryBaltimoreUSA
  3. 3.Department of Physical TherapyYoungstown State UniversityYoungstownUSA

Personalised recommendations