Skip to main content
Log in

Reproducibility of somatosensory spatial perceptual maps

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Various studies have shown subjects to mislocalize cutaneous stimuli in an idiosyncratic manner. Spatial properties of individual localization behavior can be represented in the form of perceptual maps. Individual differences in these maps may reflect properties of internal body representations, and perceptual maps may therefore be a useful method for studying these representations. For this to be the case, individual perceptual maps need to be reproducible, which has not yet been demonstrated. We assessed the reproducibility of localizations measured twice on subsequent days. Ten subjects participated in the experiments. Non-painful electrocutaneous stimuli were applied at seven sites on the lower arm. Subjects localized the stimuli on a photograph of their own arm, which was presented on a tablet screen overlaying the real arm. Reproducibility was assessed by calculating intraclass correlation coefficients (ICC) for the mean localizations of each electrode site and the slope and offset of regression models of the localizations, which represent scaling and displacement of perceptual maps relative to the stimulated sites. The ICCs of the mean localizations ranged from 0.68 to 0.93; the ICCs of the regression parameters were 0.88 for the intercept and 0.92 for the slope. These results indicate a high degree of reproducibility. We conclude that localization patterns of non-painful electrocutaneous stimuli on the arm are reproducible on subsequent days. Reproducibility is a necessary property of perceptual maps for these to reflect properties of a subject’s internal body representations. Perceptual maps are therefore a promising method for studying body representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Culver CM (1970) Errors in tactile localization. Am J Psychol 83:420–427

    Article  PubMed  CAS  Google Scholar 

  • Edwards MJ, Alonso-Canovas A, Schrag A et al (2011) Limb amputations in fixed dystonia: a form of body integrity identity disorder? Mov Disord 26:1410–1414. doi:10.1002/mds.23671

    Article  PubMed  Google Scholar 

  • Franz SI (1913) The accuracy of localization of touch stimuli on different bodily segments. Psychol Rev 20:22

    Article  Google Scholar 

  • Franz SI (1916) The constant error of touch localization. J Exp Psychol 1:16

    Google Scholar 

  • Guardia D, Lafargue G, Thomas P et al (2010) Anticipation of body-scaled action is modified in anorexia nervosa. Neuropsychologia 48:3961–3966

    Article  PubMed  Google Scholar 

  • Hamburger HL (1980) Locognosia, the ability to localizate tactile stimuli on the body surface. Universiteit van Amsterdam, Amsterdam

    Google Scholar 

  • Harrar V, Harris LR (2009) Eye position affects the perceived location of touch. Exp Brain Res 198:403–410. doi:10.1007/s00221-009-1884-4

    Article  PubMed  Google Scholar 

  • Harrar V, Harris LR (2010) Touch used to guide action is partially coded in a visual reference frame. Exp Brain Res 203:615–620. doi:10.1007/s00221-010-2252-0

    Article  PubMed  Google Scholar 

  • Inui K, Kakigi R (2011) Pain perception in humans: use of intraepidermal electrical stimulation. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2011-301484

  • Kennett S, Taylor-Clarke M, Haggard P (2001) Noninformative vision improves the spatial resolution of touch in humans. Curr Biol 11:1188–1191

    Article  PubMed  CAS  Google Scholar 

  • Longo MR, Azañón E, Haggard P (2010) More than skin deep: body representation beyond primary somatosensory cortex. Neuropsychologia 48:655–668

    Article  PubMed  Google Scholar 

  • Longo MR, Pernigo S, Haggard P (2011) Vision of the body modulates processing in primary somatosensory cortex. Neurosci Lett 489:159–163

    Article  PubMed  CAS  Google Scholar 

  • Mancini F, Longo MR, Iannetti GD, Haggard P (2011) A supramodal representation of the body surface. Neuropsychologia 49:1194–1201. doi:10.1016/j.neuropsychologia.2010.12.040

    Article  PubMed  Google Scholar 

  • McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1:30–46

    Article  Google Scholar 

  • Medina J, Coslett HB (2010) From maps to form to space: touch and the body schema. Neuropsychologia 48:645–654. doi:10.1016/j.neuropsychologia.2009.08.017

    Article  PubMed  Google Scholar 

  • Moseley GL, Gallace A, Spence C (2012) Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical “body matrix”. Neurosci Biobehav Rev 36:34–46

    Article  PubMed  Google Scholar 

  • Mouraux A, Iannetti GD, Plaghki L (2010) Low intensity intra-epidermal electrical stimulation can activate Adelta-nociceptors selectively. Pain 150:199–207. doi:10.1016/j.pain.2010.04.026

    Article  PubMed  CAS  Google Scholar 

  • Nico D, Daprati E, Nighoghossian N et al (2010) The role of the right parietal lobe in anorexia nervosa. Psychol Med 40:1531–1539. doi:10.1017/S0033291709991851

    Article  PubMed  CAS  Google Scholar 

  • Pillsbury WB (1895) Some questions of the cutaneous sensibility. Am J Psychol 7:42–57

    Article  Google Scholar 

  • Portney LG, Watkins MP (2009) Foundations of clinical research: applications to practice. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Serino A, Haggard P (2010) Touch and the body. Neurosci Biobehav Rev 34:224–236. doi:10.1016/j.neubiorev.2009.04.004

    Article  PubMed  Google Scholar 

  • Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  PubMed  CAS  Google Scholar 

  • Steenbergen P, Buitenweg JR, Trojan J et al (2012) A system for inducing concurrent tactile and nociceptive sensations at the same site using electrocutaneous stimulation. Behav Res Methods. doi:10.3758/s13428-012-0216-y

    PubMed  Google Scholar 

  • Taylor-Clarke M, Kennett S, Haggard P (2002) Vision modulates somatosensory cortical processing. Curr Biol 12:233–236

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Clarke M, Jacobsen P, Haggard P (2004) Keeping the world a constant size: object constancy in human touch. Nat Neurosci 7:219–220

    Article  PubMed  CAS  Google Scholar 

  • Trojan J, Kleinböhl D, Stolle AM et al (2006) Psychophysical “perceptual maps” of heat and pain sensations by direct localization of CO2 laser stimuli on the skin. Brain Res 1120:106–113

    Article  PubMed  CAS  Google Scholar 

  • Trojan J, Kleinböhl D, Stolle AM et al (2009) Independent psychophysical measurement of experimental modulations in the somatotopy of cutaneous heat-pain stimuli. Somatosens Mot Res 26:11–17. doi:10.1080/08990220902813491

    Article  PubMed  Google Scholar 

  • Trojan J, Stolle AM, Mršić AC et al (2010) Spatiotemporal integration in somatosensory perception: effects of sensory saltation on pointing at perceived positions on the body surface. FPSYG 1:1–17

    Article  Google Scholar 

  • Urgesi C, Fornasari L, De Faccio S et al (2011) Body schema and self-representation in patients with bulimia nervosa. Int J Eat Disorder 44:238–248. doi:10.1002/eat.20816

    Article  Google Scholar 

  • van der Heide EM, Buitenweg JR, Marani E, Rutten WL (2009) Single pulse and pulse train modulation of cutaneous electrical stimulation: a comparison of methods. J Clin Neurophysiol 26:54–60

    Article  PubMed  Google Scholar 

  • van der Lubbe RHJ, Buitenweg JR, Boschker M et al (2012) The influence of transient spatial attention on the processing of intracutaneous electrical stimuli examined with ERPs. Clyn Neurophys 123:947–959

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in this paper is part of the SOMAPS project, which was funded by the EU as a NEST pathfinder initiative in the Sixth Framework Programme (contract no. 043432). We want to thank Dr. Inui for providing the IES electrodes which were used for the VAS scoring procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Steenbergen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steenbergen, P., Buitenweg, J.R., Trojan, J. et al. Reproducibility of somatosensory spatial perceptual maps. Exp Brain Res 224, 417–427 (2013). https://doi.org/10.1007/s00221-012-3321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3321-3

Keywords

Navigation