Skip to main content

Reaching and grasping behavior in Macaca fascicularis: a kinematic study

Abstract

The prehensile hand is one of the major traits distinguishing primates from other mammal species. All primates, in fact, are able to grasp an object and hold it in part or entirely using a single hand. Although there is a wealth of behavioral data regarding grasping movements in humans and apes, there is relatively little material on macaques, the animal model often used to investigate neuronal mechanisms responsible for grip control in humans. To date, evidence regarding free-ranging macaques is confined to observational data, while quantitative reports describe studies carried out in laboratory settings or in captivity. The purpose of the present study was to provide the first kinematic descriptions of basic grip behavior with regard to precision and power grips in free-ranging macaque monkeys. Video footage of those animals grasping objects was analyzed frame-by-frame using digitalization techniques. The results revealed that the two types of grips considered are each characterized by specific kinematic signatures. It was also found that hand kinematics was scaled depending on the type of grasp needing to be adopted and the intrinsic properties of the object to be grasped. In accordance with data concerning humans, these findings indicate that the intrinsic features of an object affect the planning and control of reach-to-grasp movements even in free-ranging macaques. The data presented here take research in the field of comparative reach-to-grasp kinematics in human and non-human primates another step forward as they are based on precise measurements of spontaneous grasping movements by animals living/acting in their natural environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Altmann J (1974) Observational study of behavior—sampling methods. Behaviour 49:227–267

    PubMed  Article  CAS  Google Scholar 

  2. Castiello U (1996) Grasping a fruit: selection for action. J Exp Psychol Hum Percept Perform 22:582–603

    PubMed  Article  CAS  Google Scholar 

  3. Castiello U (2005) The Neuroscience of grasping. Nat Rev Neurosci 6:726–736

    PubMed  Article  CAS  Google Scholar 

  4. Castiello U, Becchio C, Zoia S, Nelini C, Sartori L, Blason L, D’Ottavio G, Bulgheroni M, Gallese V (2010) Wired to be social: the ontogeny of human interaction. PLoS ONE 5:e13199

    PubMed  Article  Google Scholar 

  5. Christel M (1993) Grasping techniques and hand preferences in hominoidea. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer-Verlag, New York, pp 91–108

    Chapter  Google Scholar 

  6. Christel MI, Billard A (2002) Comparison between macaques’ and humans’ kinematics of prehension: the role of morphological differences and control mechanisms. Behav Brain Res 131:169–184

    PubMed  Article  Google Scholar 

  7. Courtine G, Bunge MB, Fawcett JW et al (2007) Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat Med 13:561–566

    PubMed  Article  CAS  Google Scholar 

  8. Fogassi L, Gallese V, Gentilucci M, Chieffi S, Rizzolatti G (1991) Studio cinematico dei movimenti di raggiungimento e prensione nella scimmia. Boll Soc Ital Biol Sper 7:715–721

    Google Scholar 

  9. Fogassi L, Gallese V, Buccino G, Craighero L, Fadiga L, Rizzolatti G (2001) Cortical mechanism for the visual guidance of hand grasping movements in the monkey: a reversible inactivation study. Brain 124:571–586

    PubMed  Article  CAS  Google Scholar 

  10. Gallese V, Murata A, Kaseda M, Niki N, Sakata H (1994) Deficit of hand preshaping after muscimol injection in monkey parietal cortex. NeuroReport 5:1525–1529

    PubMed  Article  CAS  Google Scholar 

  11. Gentilucci M, Castiello U, Corradini ML, Scarpa M, Umiltà C, Rizzolatti G (1991) Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia 29:361–378

    PubMed  Article  CAS  Google Scholar 

  12. Hochberg LR, Serruya MD, Friehs GM et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171

    PubMed  Article  CAS  Google Scholar 

  13. Iwaniuk AN, Whishaw IQ (2000) On the origins of skilled forelimb movements. Trends Neurosci 23:372–376

    PubMed  Article  CAS  Google Scholar 

  14. Jackson A, Moritz CT, Mavoori J, Lucas TH, Fetz EE (2006) The neurochip BCI: towards a neural prosthesis for upper limb function. IEEE Trans Neural Syst Rehabil Eng 14:187–190

    PubMed  Article  Google Scholar 

  15. Jakobson L, Goodale MA (1991) Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Exp Brain Res 86:199–208

    PubMed  Article  CAS  Google Scholar 

  16. Jindrich DL, Courtine G, Liu JJ et al (2011) Unconstrained three-dimensional reaching in Rhesus monkeys. Exp Brain Res 209:35–50

    PubMed  Article  Google Scholar 

  17. Kim HK, Carmena JM, Biggs SJ, Hanson TL, Nicolelis MA, Srinivasan MA (2007) The muscle activation method: an approach to impedance control of brain-machine interfaces through a musculoskeletal model of the arm. IEEE Trans Biomed Eng 54:1520–1529

    PubMed  Article  Google Scholar 

  18. Macfarlane NBV, Graziano MSA (2009) Diversity of grip in Macaca mulatta. Exp Brain Res 197:255–268

    PubMed  Article  Google Scholar 

  19. Marzke MW (1994) Evolution. In: Castiello U, Bennett KMB (eds) Insights into the reach to grasp movement. Elsevier, Amsterdam, pp 19–36

    Google Scholar 

  20. Napier JR (1956) The prehensile movements of the human hand. J Bone Joint Surg Br 38:902–913

    PubMed  Google Scholar 

  21. Napier JR (1961) Prehensibility and opposability in the hands of primates. Symp Zool Soc Lond 5:115–132

    Google Scholar 

  22. Pouydebat E, Berge C, Gorce P, Coppens Y (2006) Grasping among primates: precision, tools and evolutionary implications. CR Palevol 5:597–602

    Article  Google Scholar 

  23. Pouydebat E, Gorce P, Coppens Y, Bels V (2009) Biomechanical study of grasping according to the volume of the object: human versus non-human primates. J Biomech 42:266–272

    PubMed  Article  Google Scholar 

  24. Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    PubMed  Article  CAS  Google Scholar 

  25. Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res 71:491–507

    PubMed  Article  CAS  Google Scholar 

  26. Roy AC, Paulignan Y, Farnè A, Jouffrais C, Boussaoud D (2000) Hand kinematics during reaching and grasping in the macaque monkey. Behav Brain Res 117:75–82

    PubMed  Article  CAS  Google Scholar 

  27. Roy AC, Paulignan Y, Meunier M, Boussaoud D (2002) Prehension movements in the macaque monkey: effects of object size and location. J Neurophysiol 88:1491–1499

    PubMed  Google Scholar 

  28. Roy AC, Paulignan Y, Meunier M, Boussaoud D (2006) Prehension movements in the macaque monkey: effects of perturbation of object size and location. Exp Brain Res 169:182–193

    PubMed  Article  Google Scholar 

  29. Sacrey LA, Alaverdashvili, Wishaw IQ (2009) Similar hand shaping in reaching-for-food (skilled reaching) in rats and humans provides evidence of homology in release, collection, and manipulation movements. Behav Brain Res 204:153–161

    PubMed  Article  Google Scholar 

  30. Spinozzi G, Truppa V, Laganà T (2004) Grasping behaviour in tufted capuchin monkeys (Cebus apella): grip types and manual laterality for picking up a small food item. Am J Phys Anthropol 125:30–41

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Umberto Castiello.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sartori, L., Camperio Ciani, A., Bulgheroni, M. et al. Reaching and grasping behavior in Macaca fascicularis: a kinematic study. Exp Brain Res 224, 119–124 (2013). https://doi.org/10.1007/s00221-012-3294-2

Download citation

Keywords

  • Reach-to-grasp
  • Macaca fascicularis
  • Kinematics
  • Primatology