Skip to main content
Log in

Dynamical degrees of freedom and correlations in isometric finger force production

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Prior research has concluded that the correlations of isometric finger forces represent the extent to which the fingers are controlled as a single unit. If this is the case, finger force correlations should be consistent with estimates of the controlled (dynamical) degrees of freedom in finger forces. The present study examined the finger force correlations and the dynamical degrees of freedom in four isometric force tasks. The tasks were to produce a preferred level of force with the (a) Index, (b) Ring, (c) Both fingers and also to (d) Rest the fingers on the load cells. Dynamical degrees of freedom in finger forces were lowest in the Both finger force task and progressively higher in the Ring, Index and Resting finger force tasks. The finger force correlations were highest in the Resting and lowest in the Index and Ring finger tasks. The results for the dynamical degrees of freedom in finger forces were consistent with a reduction in degrees of freedom in response to the degrees of freedom problem and the task constraints. The results for the finger force correlations were inconsistent with a reduction in the dynamical degrees of freedom. These findings indicate that finger force correlations do not necessarily reflect the coupling of finger forces. The findings also highlight the value of time-domain analyses to reveal the organization of control in isometric finger forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, New York

    Google Scholar 

  • Fahrer M (1981) Interdependent and independent actions of the fingers. In: Tubiana R (ed) The hand. Saunders, Philadelphia, pp 399–401

    Google Scholar 

  • Goodman L, Riley MA, Mitra S, Turvey MT (2000) Advantages of rhythmic movements at resonance: minimal active degrees of freedom, minimal noise, and maximal predictability. J Mot Behav 32:3–8

    Article  PubMed  CAS  Google Scholar 

  • Gorniak SL, Zatsiorsky VM, Latash ML (2011) Manipulation of a fragile object by elderly individuals. Exp Brain Res 212:505–516

    Article  PubMed  Google Scholar 

  • Hong SL, Newell KM (2008a) Entropy compensation in human motor adaptation. Chaos 18:013108

    Article  PubMed  Google Scholar 

  • Hong SL, Newell KM (2008b) Entropy conservation in the control of human action. Nonlinear Dyn Psychol Life Sci 12:163–190

    Google Scholar 

  • Hong SL, Lee MH, Newell KM (2007) Magnitude and structure of isometric force variability: mechanical and neurophysiological influences. Mot Control 11:119–135

    CAS  Google Scholar 

  • Hong SL, Brown AJ, Newell KM (2008) Compensatory properties of visual information in the control of isometric force. Percept Psychophys 70:306–313

    Article  PubMed  Google Scholar 

  • Jordan K, Challis JH, Newell KM (2007) Walking speed influences on gait cycle variability. Gait Posture 26:128–134

    Article  PubMed  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns. MIT Press, Cambridge

    Google Scholar 

  • Keogh J, Morrison S, Barrett R (2006) Age-related differences in inter-digit coupling during finger pinching. Eur J Appl Physiol 97:76–88

    Article  PubMed  Google Scholar 

  • Kilbreath SL, Gandevia SC (1994) Limited independent flexion of the thumb and fingers in human subjects. J Physiol 479:487–497

    PubMed  Google Scholar 

  • Kim SW, Shim JK, Zatsiorsky VM, Latash ML (2008) Finger inter-dependence: linking the kinetic and kinematic variables. Hum Mov Sci 27:408–422

    Article  PubMed  Google Scholar 

  • Kugler PN, Turvey MT (1987) Information, natural law, and the self-assembly of rhythmic movement. Lawrence Erlbaum, Hillsdale NJ

    Google Scholar 

  • Kugler PN, Kelso JAS, Turvey MT (1980) On the concept of coordinative structures as dissipative structures: 1. Theoretical lines of convergence. In: Stelmach GE, Requin J (eds) Tutorials in motor behavior. North-Holland, Amsterdam, pp 3–47

    Chapter  Google Scholar 

  • Kugler PN, Kelso JAS, Turvey MT (1982) On the control and coordination of naturally developing systems. In: Kelso JAS, Clark JE (eds) The development of movement control and coordination. Wiley, New York, pp 5–78

    Google Scholar 

  • Kutner MH, Nachtesheim CJ, Neter J, Li W (2005) Applied linear statistical models. McGraw-Hill, New York

    Google Scholar 

  • Latash ML, Li ZM, Zatsiorsky VM (1998) A principle of error compensation studied within a task of force production by a redundant set of fingers. Exp Brain Res 122:131–138

    Article  PubMed  CAS  Google Scholar 

  • Latash ML, Scholz JF, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:276–308

    Google Scholar 

  • Leijnse JNAL (1997) Measuring force transfers in the deep flexors of the musician’s hand: theoretical analysis, clinical examples. J Biomech 30:873–882

    Article  PubMed  CAS  Google Scholar 

  • Leijnse JN, Snijders CJ, Bonte JE, Landsmeer JM, Kalker JJ, Van der Meulen JC, Sonneveld GJ, Hovius SE (1993) The hand of the musician: the kinematics of the bidigital finger system with anatomical restrictions. J Biomech 26:1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Maier MA, Hepp-Reymond M-C (1995) EMG activation patterns during force production in precision grip: II. Muscular synergies in the spatial and temporal domain. Exp Brain Res 131:101–110

    Google Scholar 

  • Martin JR, Latash ML, Zatsiorsky VM (2009) Interaction of finger enslaving and error compensation in multiple finger force production. Exp Brain Res 192:293–298

    Article  PubMed  Google Scholar 

  • Martin JR, Zatsiorsky VM, Latash ML (2011) Multi-finger interaction during involuntary and voluntary single finger force changes. Exp Brain Res 208:423–435

    Article  PubMed  CAS  Google Scholar 

  • Mitra S, Amazeen PG, Turvey MT (1998) Intermediate motor learning as decreasing active (dynamical) degrees of freedom. Hum Mov Sci 17:17–65

    Article  Google Scholar 

  • Moerchen VA, Lazarus JC, Gruben KG (2007) Task-dependent organization of pinch grip forces. Exp Brain Res 180:367–376

    Article  PubMed  Google Scholar 

  • Newell KM (1986) Constraints on the development of coordination. In: Wade MG, Whiting HTA (eds) Motor development in children: aspects of coordination and control. Martinus Nijhoff Publishers, Amsterdam

    Google Scholar 

  • Newell KM, Broderick MP, Deutsch KM, Slifkin AM (2003) Task goals and change in dynamical degrees of freedom with motor learning. J Exp Psychol Hum Percept Perform 29:379–387

    Article  PubMed  Google Scholar 

  • Olafsdottir HB, Zatsiorsky VM, Latash ML (2008) The effects of strength training on finger strength and hand dexterity in healthy elderly individuals. J Appl Physiol 105:1166–1178

    Article  PubMed  Google Scholar 

  • Pincus S, Singer BH (1996) Randomness and degrees of irregularity. Proc Nat Acad Sci 93:2083–2088

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan R, Newell KM (2008) Motor synergies: feedback and error compensation within and between trials. Exp Brain Res 186:561–570

    Article  PubMed  Google Scholar 

  • Sanes JN, Donoghue JP, Thangaraj V, Edelman RR, Warach S (1995) Shared neural substrates controlling hand movements in human motor cortex. Science 268:1775–1777

    Article  PubMed  CAS  Google Scholar 

  • Schieber MH, Hibbard LS (1993) How somatotopic is the motor cortex area. Science 261:489–492

    Article  PubMed  CAS  Google Scholar 

  • Schuind F, Garcia-Elias M, Cooney WP, An KN (1992) Flexor tendon forces: in vivo measurements. J Hand Surg [Am] 17:291–298

    Article  CAS  Google Scholar 

  • Sharp WE, Newell KM (2000) Coordination of grip configuration as a function of force output. J Mot Behav 32:73–82

    Article  PubMed  CAS  Google Scholar 

  • Slifkin AB, Newell KM (1999) Noise, information transmission, and force variability. J Exp Psychol Hum Percept Perform 25:837–851

    Article  PubMed  CAS  Google Scholar 

  • Sosnoff JJ, Jordan K, Newell KM (2005) Information and force level interact in regulating force output during two and three digit grip configuration. Exp Brain Res 167:76–85

    Article  PubMed  Google Scholar 

  • Sosnoff JJ, Valantine AD, Newell KM (2006) Independence between the amount and structure of variability at low force levels. Neurosci Lett 392:165–169

    Article  PubMed  CAS  Google Scholar 

  • Stergiou N (2004) Innovative analysis of human movement. Human Kinetics, Champaign IL

    Google Scholar 

  • Turvey MT (1977) Preliminaries to a theory of action with reference to vision. In: Shaw R, Bransford J (eds) Perceiving, acting and knowing: toward an ecological psychology. Lawrence Erlbaum, Hillsdale, pp 211–265

    Google Scholar 

  • Turvey MT (2007) Action and perception at the level of synergies. Hum Mov Sci 26:657–697

    Article  PubMed  CAS  Google Scholar 

  • Vaillancourt DE, Slifkin AB, Newell KM (2001) Regularity of force tremor in Parkinson's disease. Clin Neurophysiol 112:1594–1603

    Article  PubMed  CAS  Google Scholar 

  • Vaillancourt DE, Slifkin AB, Newell KM (2002) Inter-digit individuation and force variability in the precision grip of young, elderly, and Parkinson’s disease participants. Mot Control 6:113–128

    Google Scholar 

  • Zatsiorsky VM, Latash ML (2004) Prehension synergies. Exerc Sport Sci Rev 32:75–80

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Li ZM, Latash ML (1998) Coordinated force production in multi-finger tasks: finger interaction and neural network modeling. Biol Cybern 79:139–150

    Article  PubMed  CAS  Google Scholar 

  • Zatsiorsky VM, Li ZM, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric G. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, E.G. Dynamical degrees of freedom and correlations in isometric finger force production. Exp Brain Res 223, 533–539 (2012). https://doi.org/10.1007/s00221-012-3280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3280-8

Keywords

Navigation