Skip to main content
Log in

Strong anticipation: complexity matching in interpersonal coordination

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A subtle coordination occurs within complex systems, between multiple nested sub-systems. This intra-system coordination can be detected by the presence of 1/f fluctuations produced by the system. But coordination can occur also between systems. Interpersonal coordination has been studied from a local point of view until now, focusing on macroscopic interactions. But the recent concept of strong anticipation introduced by Dubois (Lect Notes Comput Sci 2684:110–132, 2003) suggests that interactions could occur on multiple levels between complex systems. The hypothesis is that time series in interpersonal synchronization present a matching of the complexity index (fractal exponent). Moreover, it is argued that this matching is not a consequence of short-term adaptations but reveals a global coordination between participants. Eleven pairs of participants oscillated a hand-held pendulum in the in-phase pattern for 11 min, in three conditions where the coupling strength was manipulated by the perceptual feedbacks. The results show a high correlation between fractal exponents irrespective of the coupling strength, and a very low percentage of local cross-correlations between time series appear at lag 0 and lag 1. These results suggest that interpersonal coordination, and more globally synchronization of participants with natural environments, is based on non-local time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bak P, Paczuski M (1995) Complexity, contingency, and criticality. Proc Natl Acad Sci USA 92:6689–6696

    Article  PubMed  CAS  Google Scholar 

  • Bressler SL (2002) Understanding cognition through large-scale cortical networks. Curr Dir Psychol Sci 11:58–61

    Article  Google Scholar 

  • Bressler SL, Kelso J (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5:26–36

    Article  PubMed  Google Scholar 

  • Delignières D, Torre K (2011) Event-based and emergent timing: dichotomy or continuum? A reply to Repp and Steinman (2010). J Mot Behav 43:311–318

    Article  PubMed  Google Scholar 

  • Delignières D, Lemoine L, Torre K (2004) Time intervals production in tapping and oscillatory motion. Hum Mov Sci 23:87–103

    Article  PubMed  Google Scholar 

  • Delignières D, Ramdani S, Lemoine L, Torre K, Fortes M, Ninot G (2006) Fractal analysis for short time series: a reassessment of classical methods. J Math Psychol 50:525–544

    Article  Google Scholar 

  • Delignières D, Torre K, Lemoine L (2008) Fractal models for event-based and dynamical timers. Acta Psychol 127:382–397

    Google Scholar 

  • Diedrich FJ, Warren WH (1995) Why change gaits? Dynamics of the walk-run transition. J Exp Psychol Hum Percept Perform 21:183–202

    Article  PubMed  CAS  Google Scholar 

  • Dubois DM (2003) Mathematical foundations of discrete and functional systems with strong and weak anticipations. Lect Notes Comput Sci 2684:110–132

    Article  Google Scholar 

  • Eke A, Herman P, Bassingthwaighte JB, Raymond GM, Percival DB, Cannon M, Balla I, Ikrényi C (2000) Physiological time series: distinguishing fractal noises from motions. Pflügers Arch 439:403–415

    Article  PubMed  CAS  Google Scholar 

  • Gilden DL (2001) Cognitive emissions of 1/f noise. Psychol Rev 108:33–56

    Article  PubMed  CAS  Google Scholar 

  • Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99:2466–2472

    Article  PubMed  Google Scholar 

  • Granger CWJ, Joyeux R (1980) An introduction to long-memory time series models and fractional differencing. J Time Ser Anal 1:15–29

    Article  Google Scholar 

  • Hausdorff JM, Peng CK (1996) Multiscaled randomness: a possible source of 1/f noise in biology. Phys Rev E 54:2154–2155

    Article  CAS  Google Scholar 

  • Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger AR (1995) Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J Appl Physiol 78:349–358

    PubMed  CAS  Google Scholar 

  • Hausdorff JM, Mitchell SL, Firtion R, Peng CK, Cudkowicz ME, Wie JY, Goldberger AL (1997) Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Appl Physiol 82:262–269

    PubMed  CAS  Google Scholar 

  • Holden JG, Van Orden GC, Turvey MT (2009) Dispersion of response times reveals cognitive dynamics. Psychol Rev 116:318–342

    Article  PubMed  Google Scholar 

  • Ihlen EAF, Vereijken B (2010) Beyond 1/fα fluctuation in cognitive performance. J Exp Psychol Gen 139:1–81

    Article  Google Scholar 

  • Jirsa VK, Fink P, Foo P, Kelso JAS (2000) Parametric stabilization of biological coordination: a theoretical model. J Biol Phys 26:85–112

    Article  Google Scholar 

  • Kello CT, Beltz BC, Holden JG, Van Orden GC (2007) The emergent coordination of cognitive function. J Exp Psychol Gen 136:551–568

    Article  PubMed  Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol Regul Integr Comp 15:1000–1004

    Google Scholar 

  • Kelso JAS (1995) Dynamics patterns: the self-organisation of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kilner JM, Paulignan Y, Blakemore SJ (2003) An interference effect of observed biological movement on action. Curr Biol 13:522–525

    Article  PubMed  CAS  Google Scholar 

  • Lagarde J, Tognoli E, Kelso JAS (2006) How the brain recruits and binds segregated areas for the production of adaptive behavior: a multichannel EEG and behavioral study of multimodal coordination dynamics. J Sport Exerc Psychol 28:18–19

    Google Scholar 

  • Lemoine L, Delignières D (2009) Detrended windowed (Lag One) auto-correlation: a new method for distinguishing between event-based and emergent timing. Quart J Exp Psychol 62:585–604

    Google Scholar 

  • Madison G (2001) Functional modelling of the human timing mechanism. Acta Universitatis Upsamiensis, Uppsala

    Google Scholar 

  • Mates J (1994a) A model of synchronization of motor acts to a stimulus sequence: i. Timing and error corrections. Biol Cybern 70:463–473

    Article  PubMed  CAS  Google Scholar 

  • Mates J (1994b) A model of synchronization of motor acts to a stimulus sequence: II. Stability analysis, error estimation and simulations. Biol Cybern 70:475–484

    Article  PubMed  CAS  Google Scholar 

  • Neggers SF, Bekkering H (2000) Ocular gaze is anchored to the target of an ongoing pointing movement. J Neurophysiol 83:639–651

    PubMed  CAS  Google Scholar 

  • Nessler JA, Gilliland SJ (2009) Interpersonal synchronization during side by side treadmill walking is influenced by leg length differential and altered sensory feedback. Hum Mov Sci 28:772–785

    Article  PubMed  Google Scholar 

  • Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL (1993) Long-range anti-correlations and non-Gaussian behavior of the heart-beat. Phys Rev Lett 70:1343–1346

    Article  Google Scholar 

  • Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in non stationary heartbeat time series. Chaos 5:82–87

    Article  PubMed  CAS  Google Scholar 

  • Pressing J, Jolley-Rogers G (1997) Spectral properties of human cognition and skill. Biol Cybern 76:339–347

    Article  PubMed  CAS  Google Scholar 

  • Repp BH (2005) Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12:969–992

    Article  PubMed  Google Scholar 

  • Richardson MJ, Marsh KL, Isenhower R, Goodman J, Schmidt RC (2007) Rocking together: dynamics of intentional and unintentional interpersonal coordination. Hum Mov Sci 26:867–891

    Article  PubMed  Google Scholar 

  • Robertson SD, Zelaznik HN, Lantero DA, Bojczyk G, Spencer RM, Doffin JG, Schneidt T (1999) Correlations for timing consistency among tapping and drawing tasks: evidence against a single timing process for motor control. J Exp Psychol Hum Percept Perform 25:1316–1330

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RC, O’Brien B (1997) Evaluating the dynamics of unintended interpersonal coordination. Ecol Psychol 9:189–206

    Article  Google Scholar 

  • Schmidt RC, Turvey MT (1994) Phase-entrainment dynamics of visually coupled rhythmic movements. Biol Cybern 70:369–376

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RC, Carello C, Turvey MT (1990) Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J Exp Psychol Hum Percept Perform 16:227–247

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RC, Fitzpatrick P, Caron R, Mergeche J (2011) Understanding social motor coordination. Hum Mov Sci 30:834–845

    Article  PubMed  CAS  Google Scholar 

  • Shockley KD, Santana MV, Fowler CA (2003) Mutual interpersonal postural constraints are involved in cooperative conversation. J Exp Psychol Hum Percept Perform 29:326–332

    Article  PubMed  Google Scholar 

  • Stephen DG, Dixon J (2011) Strong anticipation: multifractal cascade dynamics modulate scaling in synchronization behaviors. Chaos Solitons Fract 44:160–168

    Article  Google Scholar 

  • Stephen DG, Stepp N, Dixon J, Turvey MT (2008) Strong anticipation: sensitivity to long-range correlations in synchronization behavior. Phys A 387:5271–5278

    Article  Google Scholar 

  • Stepp N, Turvey MT (2010) On strong anticipation. Cogn Syst Res 11:148–164

    Article  PubMed  Google Scholar 

  • Torre K, Delignières D (2008) Distinct ways for timing movements in bimanual coordination tasks: the contribution of serial correlation analysis and implications for modeling. Acta Psychol 129:284–296

    Article  Google Scholar 

  • Torre K, Balasubramaniam R, Delignières D (2010) Oscillating in synchrony with a metronome: serial dependence, limit cycle dynamics, and modeling. Mot Control 14:323–343

    Google Scholar 

  • Van Orden GC, Holden JC, Turvey MT (2003) Self-organization of cognitive performance. J Exp Psychol Gen 132:331–350

    Article  PubMed  Google Scholar 

  • Van Orden GC, Kloos H, Wallot S (2009) Living in the pink: intentionality, wellness, and complexity. In: Hooker C (ed) Philosophy of complex systems: handbook of the philosophy of science. Elsevier, Amsterdam

    Google Scholar 

  • Vorberg D, Wing A (1996) Modeling variability and dependence in timing. In: Heuer H, Keele SW (eds) Handbook of perception and action, vol 2. Academic Press, London, pp 181–262

    Google Scholar 

  • Voss HU (2000) Anticipating chaotic synchronization. Phys Rev 61:5115–5119

    Google Scholar 

  • Wagenmakers EJ, Farrell S, Ratcliff R (2004) Estimation and interpretation of 1/fα noise in human cognition. Psychon Bull Rev 11:579–615

    Article  PubMed  Google Scholar 

  • Ward L (2002) Dynamical cognitive science. MIT press, Cambridge

    Google Scholar 

  • West BJ, Geneston EL, Grigolini P (2008) Maximizing information exchange between complex networks. Phys Rep 468:1–99

    Article  Google Scholar 

  • Wing AM, Kristofferson AB (1973) The timing of interresponse intervals. Percep Psychophys 13:455–460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivien Marmelat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmelat, V., Delignières, D. Strong anticipation: complexity matching in interpersonal coordination. Exp Brain Res 222, 137–148 (2012). https://doi.org/10.1007/s00221-012-3202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3202-9

Keywords

Navigation