Skip to main content
Log in

Using prediction errors to drive saccade adaptation: the implicit double-step task

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A prediction-based error signal, neurally computed as the difference between predicted and observed movement outcomes, has been proposed as the driving force for motor learning. This suggests that the generation of predictive saccades to periodically paced targets—whose performance accuracy is actively maintained using this same error signal—invokes the motor-learning network. We examined whether a simple predictive-saccade task (implicit double-step adaptation, in which targets are gradually displaced outward to exaggerate normal hypometric movement errors) can stand in place of a traditional double-step saccade-adaptation task to induce an increase in saccade gain. We find that the implicit double-step adaptation task can induce significant gain-increase adaptation (of comparable magnitude to that of the standard double-step task) in normal control subjects. Unlike control subjects, patients with impaired cerebella are unable to adapt their saccades in response to this paradigm; this implies that the cerebellum is crucial for processing prediction-based error signals for motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alahyane N, Pelisson D (2005) Long-lasting modifications of saccadic eye movements following adaptation induced in the double-step target paradigm. Learn Mem 12:433–443

    Article  PubMed  Google Scholar 

  • Bahcall DO, Kowler E (2000) The control of saccadic adaptation: implications for the scanning of natural visual scenes. Vis Res 40:2779–2796

    Article  PubMed  CAS  Google Scholar 

  • Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16:645–649

    Article  PubMed  CAS  Google Scholar 

  • Bronstein AM, Kennard C (1987) Predictive eye saccades are different from visually triggered saccades. Vis Res 27:517–520

    Article  PubMed  CAS  Google Scholar 

  • Collins T, Wallman J (2012) The relative importance of retinal error and prediction in saccadic adaptation. J Neurophysiol 107:3342–3348

    Google Scholar 

  • Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R (2010) Size of error affects cerebellar contributions to motor learning. J Neurophysiol 103:2275–2284

    Google Scholar 

  • Ethier V, Zee DS, Shadmehr R (2008) Spontaneous recovery of motor memory during saccade adaptation. J Neurophysiol 99:2577–2583

    Article  PubMed  Google Scholar 

  • Fujita M, Amagai A, Minakawa F, Aoki M (2002) Selective and delay adaptation of human saccades. Cogn Brain Res 13:41–52

    Article  Google Scholar 

  • Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P (2008) Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci 27:132–144

    Article  PubMed  Google Scholar 

  • Henson DB (1978) Corrective saccades: effects of altering visual feedback. Vis Res 18:63–67

    Article  PubMed  CAS  Google Scholar 

  • Honjo K, Ohshita T, Kawakami H et al (2004) Quantitative assessment of cerebral blood flow in genetically confirmed spinocerebellar ataxia type 6. Arch Neurol 61:933–937

    Article  PubMed  Google Scholar 

  • Ikegami T, Hirashima M, Taga G, Nozaki D (2010) Asymmetric transfer of visuomotor learning between discrete and rhythmic movements. J Neurosci 30:4515–4521

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Watanabe M, Yoshizawa K et al (1999) Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatr 67:86–89

    Article  PubMed  CAS  Google Scholar 

  • Isotalo E, Lasker AG, Zee DS (2005) Cognitive influences on predictive saccadic tracking. Exp Brain Res 165:461–469

    Article  PubMed  CAS  Google Scholar 

  • Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar contributions to reach adaptation and learning sensory consequences of action. J Neurosci 32:4230–4239

    Article  PubMed  CAS  Google Scholar 

  • Joiner WM, Shelhamer M, Ying SH (2005) Cerebellar influence in oculomotor phase-transition behavior. Ann N Y Acad Sci 1039:536–539

    Article  PubMed  Google Scholar 

  • Lasker AG, Isotalo EH, Zee DS (2005) Predictive saccades to a regularly alternating target in cerebellar patients. Ann N Y Acad Sci 1039:544–547

    Article  PubMed  CAS  Google Scholar 

  • Leigh RJ, Zee DS (2006) The neurology of eye movements. Oxford University Press, New York

    Google Scholar 

  • Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26:3642–3645

    Google Scholar 

  • Mclaughlin SC (1967) Parametric adjustment in saccadic eye movements. Percept Psychophys 2:359–362

    Article  Google Scholar 

  • Mehta B, Schaal S (2002) Forward models in visuomotor control. J Neurophysiol 88:942–953

    PubMed  Google Scholar 

  • Melis BJ, van Gisbergen JA (1996) Short-term adaptation of electrically induced saccades in monkey superior colliculus. J Neurophysiol 76:1744–1758

    PubMed  CAS  Google Scholar 

  • Miall RC (1998) The cerebellum, predictive control and motor coordination. Novartis Found Symp 218:272–284; discussion 284–290

    Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Miller JM, Anstis T, Templeton WB (1981) Saccadic plasticity: parametric adaptive control by retinal feedback. J Exp Psychol Hum Percept Perform 7:356–366

    Article  PubMed  CAS  Google Scholar 

  • Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26:9107–9116

    Article  PubMed  CAS  Google Scholar 

  • Nagel M, Behrmann H, Zangemeister WH (2008) Disturbance of predictive response initiation of eye and head movements in cerebellar patients. Eur Neurol 60:179–185

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng 10:137–145

    PubMed  CAS  Google Scholar 

  • Sasaki H, Kojima H, Yabe I et al (1998) Neuropathological and molecular studies of spinocerebellar ataxia type 6 (SCA6). Acta Neuropathol 95:199–204

    Article  PubMed  CAS  Google Scholar 

  • Shelhamer M (2005) Sequences of predictive saccades are correlated over a span of approximately 2 s and produce a fractal time series. J Neurophysiol 93:2002–2011

    Article  PubMed  Google Scholar 

  • Shelhamer M, Joiner WM (2003) Saccades exhibit abrupt transition between reactive and predictive; predictive saccade sequences have long-term correlations. J Neurophysiol 90:2763–2769

    Article  PubMed  Google Scholar 

  • Stark L, Young LR, Vossius G (1962) Predictive control of eye tracking movements. Ire Trans Hum Factors Electron Hfe 3:52–57

    Article  Google Scholar 

  • Straube A, Deubel H, Ditterich J, Eggert T (2001) Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology 57:2105–2108

    Article  PubMed  CAS  Google Scholar 

  • Trouillas P, Takayanagi T, Hallett M et al (1997) International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211

    Article  PubMed  CAS  Google Scholar 

  • Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    Article  PubMed  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  PubMed  CAS  Google Scholar 

  • Wong AL, Shelhamer M (2011a) Exploring the fundamental dynamics of error-based motor learning using a stationary predictive-saccade task. PLoS One 6:e25225

    Article  PubMed  CAS  Google Scholar 

  • Wong AL, Shelhamer M (2011b) Saccade adaptation improves in response to a gradually introduced stimulus perturbation. Neurosci Lett 500:207–211

    Article  PubMed  CAS  Google Scholar 

  • Wong AL, Shelhamer M (2011c) Sensorimotor adaptation error signals are derived from realistic predictions of movement outcomes. J Neurophysiol 105:1130–1140

    Article  PubMed  Google Scholar 

  • Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R (2009) Cerebellar contributions to adaptive control of saccades in humans. J Neurosci 29:12930–12939

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge DC Roberts for technical assistance. We also thank SH Ying, AX Du, BC Jung, E Bryant-Cavazos, and E Murray for their assistance in recruiting SCA6 patients and conducting ICARS tests. This work was supported by NSF grant BCS-1126957, NIH grant R21-EY019713, and NIH grant T32 DC000023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron L. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, A.L., Shelhamer, M. Using prediction errors to drive saccade adaptation: the implicit double-step task. Exp Brain Res 222, 55–64 (2012). https://doi.org/10.1007/s00221-012-3195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3195-4

Keywords

Navigation