Skip to main content
Log in

Ventral and dorsal fiber systems for imagined and executed movement

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Although motor imagery is an entirely cognitive process, it shows remarkable similarity to overt movement in behavioral and physiological studies. In concordance, brain imaging studies reported shared fronto-parietal sensorimotor networks commonly engaged by both tasks. However, differences in prefrontal and parietal regions point toward additional cognitive mechanisms in the context of imagery. Within the perspective of a general dichotomization into dorsal and ventral processing streams in the brain, the question arises whether motor imagery and overt movement could differentially involve the dorsal or ventral system. Therefore, we combined fMRI and DTI data of 20 healthy subjects to analyze the anatomical characteristics of connecting fronto-parietal association pathways of imagined and overt movements. We found a dichotomy of fiber pathways into dorsal and ventral systems: the superior longitudinal fascicle (SLF II-III) was found to connect frontal and parietal regions involved in both overt and imagined movements, whereas a ventral tract via the extreme/external capsule (EmC/EC) connects cortical regions specific for motor imagery that were situated more anteriorly and posteriorly. We suppose that motor imagery-related kinesthetic emulations are embedded into dorsal sensorimotor networks, and imagery-specific cognitive functions are implemented in the ventral system. These findings have implications for models of motor cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anwander A, Tittgemeyer M, von Cramon DY, Friederici AD, Knösche TR (2007) Connectivity-based parcellation of Broca’s area. Cereb Cortex 17:816–825

    Article  PubMed  CAS  Google Scholar 

  • Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851

    Article  PubMed  Google Scholar 

  • Barsalou LW (2008) Grounded cognition. Annu Rev Psychol 59:617–645

    Article  PubMed  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    Article  PubMed  CAS  Google Scholar 

  • Binkofski F, Amunts K, Stephan KM, Posse S, Schormann T, Freund HJ, Zilles K, Seitz RJ (2000) Broca’s region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum Brain Mapp 11:273–285

    Article  PubMed  CAS  Google Scholar 

  • Burdach KF (1822) Vom Baue und Leben des Gehirns. Leipzig: Dyk. Band 2

  • Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29:1092–1105

    Article  PubMed  Google Scholar 

  • Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94

    Article  PubMed  Google Scholar 

  • Champod AS, Petrides M (2007) Dissociable roles of the posterior parietal and the prefrontal cortex in manipulation and monitoring processes. Proc Natl Acad Sci U S A 104:14837–14842

    Article  PubMed  CAS  Google Scholar 

  • Choi HJ, Zilles K, Mohlberg H, Schleicher A, Fink GR, Armstrong E, Amunts K (2006) Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol 495:53–69

    Article  PubMed  Google Scholar 

  • Crammond DJ (1997) Motor imagery: never in your wildest dream. Trends Neurosci 20:54–57

    Article  PubMed  CAS  Google Scholar 

  • Croxson PL, Johansen-Berg H, Behrens TE, Robson MD, Pinsk MA, Gross CG, Richter W, Richter MC, Kastner S, Rushworth MF (2005) Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25:8854–8866

    Article  PubMed  CAS  Google Scholar 

  • Curran EJ (1909) A new association fiber tract in the cerebrum. J Comp Neurol 9:645–656

    Google Scholar 

  • Daprati E, Sirigu A (2006) How we interact with objects: learning from brain lesions. Trends Cogn Sci 10:265–270

    Article  PubMed  Google Scholar 

  • Decety J (1993) Analysis of actual and mental movement times in graphic tasks. Acta Psychol (Amst) 82:367–372

    Article  CAS  Google Scholar 

  • Decety J (1996) The neurophysiological basis of motor imagery. Behav Brain Res 77:45–52

    Article  PubMed  CAS  Google Scholar 

  • Decety J (2002) Is there such a thing as functional equivalence between imagined, observed, and executed action? In: Meltzoff MA, Prinz W (eds) The imitative mind. Cambridge University Press, Cambridge

    Google Scholar 

  • Decety J, Michel F (1989) Comparative analysis of actual and mental movement times in two graphic tasks. Brain Cogn 11:87–97

    Article  PubMed  CAS  Google Scholar 

  • Decety J, Jeannerod M, Germain M, Pastene J (1991) Vegetative response during imagined movement is proportional to mental effort. Behav Brain Res 42:1–5

    Article  PubMed  CAS  Google Scholar 

  • Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F (1994) Mapping motor representations with positron emission tomography. Nature 371:600–602

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S, Kerszberg M, Changeux JP (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci U S A 95:14529–14534

    Article  PubMed  CAS  Google Scholar 

  • Dejerine J (1895) Anatomie des Centres Nerveux, Masson edn. Rueff et Cie, Paris

    Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431

    Article  PubMed  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483

    Article  PubMed  CAS  Google Scholar 

  • Ehrsson HH, Spence C, Passingham RE (2004) That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305:875–877

    Article  PubMed  CAS  Google Scholar 

  • Ehrsson HH, Holmes NP, Passingham RE (2005) Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J Neurosci 25:10564–10573

    Article  PubMed  CAS  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Fagg AH, Arbib MA (1998) Modeling parietal-premotor interactions in primate control of grasping. Neural Netw 11:1277–1303

    Article  PubMed  Google Scholar 

  • Fiehler K, Burke M, Engel A, Bien S, Rösler F (2008) Kinesthetic working memory and action control within the dorsal stream. Cereb Cortex 18:243–253

    Article  PubMed  Google Scholar 

  • Frey S, Campbell JS, Pike GB, Petrides M (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci 28:11435–11444

    Article  PubMed  CAS  Google Scholar 

  • Frith CD, Blakemore SJ, Wolpert DM (2000) Abnormalities in the awareness and control of action. Philos Trans R Soc Lond B Biol Sci 355:1771–1788

    Article  PubMed  CAS  Google Scholar 

  • Gerardin E, Sirigu A, Lehéricy S, Poline JB, Gaymard B, Marsault C, Agid Y, Le Bihan D (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg G, Hermsdoerfer J, Glindemann R, Rorden C, Karnath HO (2007) Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb Cortex 17:2769–2776

    Article  PubMed  Google Scholar 

  • Grush R (2004) The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci 27:377–396

    PubMed  Google Scholar 

  • Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P, Hallett M (2003) Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89:989–1002

    Article  PubMed  Google Scholar 

  • Hanakawa T, Dimyan MA, Hallett M (2008) Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex 18(12):2775–27788

    Article  PubMed  Google Scholar 

  • Hesslow G (2002) Conscious thought as simulation of behaviour and perception. Trends Cogn Sci 6:242–247

    Article  PubMed  Google Scholar 

  • Hotz-Boendermaker S, Funk M, Summers P, Brugger P, Hepp-Reymond MC, Curt A, Kollias SS (2008) Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. Neuroimage 39:383–394

    Article  PubMed  Google Scholar 

  • Jeannerod M (1994) The representing brain: Neural correlates of motor intention and imagery. Behav Brain Sci 17:187–245

    Article  Google Scholar 

  • Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:103–109

    Article  Google Scholar 

  • Jeannerod M, Frak V (1999) Mental imaging of motor activity in humans. Curr Opin Neurobiol 9:735–739

    Article  PubMed  CAS  Google Scholar 

  • Johnson SH (2000) Imagining the impossible: intact motor representations in hemiplegics. NeuroReport 11:729–732

    Article  PubMed  CAS  Google Scholar 

  • Johnson SH, Rotte M, Grafton ST, Hinrichs H, Gazzaniga MS, Heinze HJ (2002) Selective activation of a parietofrontal circuit during implicitly imagined prehension. Neuroimage 17:1693–1704

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Frey SH (2004) Stimulation through simulation? Motor imagery and functional reorganization in hemiplegic stroke patients. Brain Cogn 55:328–331

    Article  PubMed  Google Scholar 

  • Jones EG, Powell TP (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820

    Article  PubMed  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  PubMed  CAS  Google Scholar 

  • Kier EL, Staib LH, Davis LM, Bronen RA (2004) Anatomic dissection tractography: a new method for precise MR localization of white matter tracts. AJNR Am J Neuroradiol 25:670–676

    PubMed  Google Scholar 

  • Klein JC, Behrens TE, Robson MD, Mackay CE, Higham DJ, Johansen-Berg H (2007) Connectivity-based parcellation of human cortex using diffusion MRI: Establishing reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA. Neuroimage 34:204–211

    Article  PubMed  Google Scholar 

  • Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302:1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Kreher BW, Schnell S, Mader I, Il’yasov KA, Hennig J, Kiselev VG, Saur D (2008) Connecting and merging fibres: pathway extraction by combining probability maps. Neuroimage 43:81–89

    Article  PubMed  CAS  Google Scholar 

  • Kuhtz-Buschbeck JP, Mahnkopf C, Holzknecht C, Siebner H, Ulmer S, Jansen O (2003) Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. Eur J Neurosci 18:3375–3387

    Article  PubMed  CAS  Google Scholar 

  • Lakoff G, Gallese V (2005) The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cogn Neuropsych 22:455–479

    Article  Google Scholar 

  • Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131

    Article  PubMed  CAS  Google Scholar 

  • Lotze M, Montoya P, Erb M, Hülsmann E, Flor H, Klose U, Birbaumer N, Grodd W (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 11:491–501

    Article  PubMed  CAS  Google Scholar 

  • Ludwig E, Klingler J (1956) Atlas cerebri humani: the inner structure of the brain demonstrated on the basis of macroscopical preparations. Little, Brown, Boston

    Google Scholar 

  • Luft AR, Skalej M, Stefanou A, Klose U, Voigt K (1998) Comparing motion- and imagery-related activation in the human cerebellum: a functional MRI study. Hum Brain Mapp 6:105–113

    Article  PubMed  CAS  Google Scholar 

  • Makris N, Pandya DN (2009) The extreme capsule in humans and rethinking of the language circuitry. Brain Struct Funct 213:343–358

    Article  PubMed  Google Scholar 

  • Makris N, Worth AJ, Sorensen AG, Papadimitriou GM, Wu O, Reese TG, Wedeen VJ, Davis TL, Stakes JW, Caviness VS, Kaplan E, Rosen BR, Pandya DN, Kennedy DN (1997) Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann Neurol 42:951–962

    Article  PubMed  CAS  Google Scholar 

  • Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS Jr, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869

    Article  PubMed  Google Scholar 

  • Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19:1233–1239

    Article  PubMed  Google Scholar 

  • Matelli M, Luppino G (2001) Parietofrontal circuits for action and space perception in the macaque monkey. Neuroimage 14(1 Pt 2):27–32

    Article  Google Scholar 

  • Matelli M, Camarda R, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251:281–298

    Article  PubMed  CAS  Google Scholar 

  • Matelli M, Govoni P, Galletti C, Kutz DF, Luppino G (1998) Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J Comp Neurol 402:327–352

    Article  PubMed  CAS  Google Scholar 

  • Mechelli A, Price CJ, Friston KJ, Ishai A (2004) Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb Cortex 14:1256–1265

    Article  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Milner AD, Goodale MA (1996) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L, Fredericksen K, Pearlson GD, Melhem ER, Solaiyappan M, Raymond GV, Moser HW, van Zijl PCM (2002) Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 47:215–223

    Article  PubMed  Google Scholar 

  • Moulton ST, Kosslyn SM (2009) Imagining predictions: mental imagery as mental emulation. Philos Trans R Soc B 364:1273–1280

    Article  Google Scholar 

  • Naito E, Kochiyama T, Kitada R, Nakamura S, Matsumura M, Yonekura Y, Sadato N (2002) Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. J Neurosci 22:3683–3691

    PubMed  CAS  Google Scholar 

  • Onufrowicz W (1887) Das balkenlose Mikrocephalengehirn Hoffman. Ein Beitrag zur pathologischen und normalen Anatomie des menschlichen Gehirnes. Arch Psychiatr 18:305–328

    Article  Google Scholar 

  • Pandya DN, Kuypers HG (1969) Cortico-cortical connections in the rhesus monkey. Brain Res 13:13–36

    Article  PubMed  CAS  Google Scholar 

  • Parker GJ, Haroon HA, Wheeler-Kingshott CA (2003) A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging 18:242–254

    Article  PubMed  Google Scholar 

  • Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci 360:781–795

    Article  PubMed  Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (2006) Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. J Comp Neurol 498:227–251

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (2007) Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J Neurosci 27:11573–11586

    Article  PubMed  CAS  Google Scholar 

  • Pezzulo G, Castelfranchi C (2009) Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychol Res 73:559–577

    Article  PubMed  Google Scholar 

  • Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12(6):718–724

    Article  PubMed  CAS  Google Scholar 

  • Ricciardi E, Bonino D, Gentili C, Sani L, Pietrini P, Vecchi T (2006) Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience 139:339–349

    Article  PubMed  CAS  Google Scholar 

  • Rijntjes M, Dettmers C, Buechel C, Kiebel S, Frackowiak RSJ, Weiller C (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19(18):8043–8048

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157

    Article  PubMed  Google Scholar 

  • Roberts AC, Tomic DL, Parkinson CH, Roeling TA, Cutter DJ, Robbins TW, Everitt BJ (2007) Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): an anterograde and retrograde tract-tracing study. J Comp Neurol 502:86–112

    Article  PubMed  Google Scholar 

  • Rushworth MF, Behrens TE, Johansen-Berg H (2006) Connection patterns distinguish 3 regions of human parietal cortex. Cereb Cortex 16:1418–1430

    Article  PubMed  CAS  Google Scholar 

  • Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry MS, Umarova R, Musso M, Glauche V, Abel S, Huber W, Rijntjes M, Hennig J, Weiller C (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci U S A 105:18035–18040

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Schoenemann PT, Sheehan MJ, Glotzer LD (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8:242–252

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185:359–381

    Article  PubMed  Google Scholar 

  • Shallice T, Burgess P (1996) The domain of supervisory processes and temporal organization of behaviour. Philos Trans R Soc Lond B Biol Sci 351:1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Sirigu A, Duhamel JR, Cohen L, Pillon B, Dubois B, Agid Y (1996) The mental representation of hand movements after parietal cortex damage. Science 273:1564–1568

    Article  PubMed  CAS  Google Scholar 

  • Sirigu A, Daprati E, Pradat-Diehl P, Franck N, Jeannerod M (1999) Perception of self-generated movement following left parietal lesion. Brain 122:1867–1874

    Article  PubMed  Google Scholar 

  • Sirigu A, Daprati E, Ciancia S, Giraux P, Nighoghossian N, Posada A, Haggard P (2004) Altered awareness of voluntary action after damage to the parietal cortex. Nat Neurosci 7:80–84

    Article  PubMed  CAS  Google Scholar 

  • Slachevsky A, Pillon B, Fourneret P, Pradat-Diehl P, Jeannerod M, Dubois B (2001) Preserved adjustment but impaired awareness in a sensory-motor conflict following prefrontal lesions. J Cogn Neurosci 13:332–340

    Article  PubMed  CAS  Google Scholar 

  • Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RS (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 73:373–386

    PubMed  CAS  Google Scholar 

  • Sweeney JA, Luna B, Keedy SK, McDowell JE, Clementz BA (2007) fMRI studies of eye movement control: investigating the interaction of cognitive and sensorimotor brain systems. Neuroimage 36(Suppl 2):T54–T60

    Article  PubMed  Google Scholar 

  • Tanné J, Boussaoud D, Boyer-Zeller N, Rouiller EM (1995) Direct visual pathways for reaching movements in the macaque monkey. NeuroReport 7:267–272

    PubMed  Google Scholar 

  • Tanné-Gariépy J, Rouiller EM, Boussaoud D (2002) Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways. Exp Brain Res 145:91–103

    Article  PubMed  Google Scholar 

  • Toni I, Shah NJ, Fink GR, Thoenissen D, Passingham RE, Zilles K (2002) Multiple Movement representations in the human brain: an event-related fMRI study. J Cogn Neurosci 14(5):769–784

    Article  PubMed  Google Scholar 

  • Trolard P (1906) Le faisceau longitudinal inférieur du cerveau. Rev Neurol 14:440–446

    Google Scholar 

  • Tsakiris M, Hesse MD, Boy C, Haggard P, Fink GR (2007) Neural signatures of body ownership: a sensory network for bodily self-consciousness. Cereb Cortex 17:2235–2244

    Article  PubMed  Google Scholar 

  • Umarova RM, Saur D, Schnell S, Kaller CP, Vry MS, Glauche V, Rijntjes M, Hennig J, Kiselev V, Weiller C (2010) Structural connectivity for visuospatial attention: significance of ventral pathways. Cereb Cortex 20:121–129

    Article  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale M, Mansfield RJW (eds) Analysis of visual behaviour. The MIT press, Cambridge, pp 549–586

    Google Scholar 

  • Urbanski M, Thiebaut de Schotten M, Rodrigo S, Catani M, Oppenheim C, Touzé E, Chokron S, Méder JF, Lévy R, Dubois B, Bartolomeo P (2008) Brain networks of spatial awareness: evidence from diffusion tensor imaging tractography. J Neurol Neurosurg Psychiatry 79:598–601

    Article  PubMed  CAS  Google Scholar 

  • Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87

    Article  PubMed  Google Scholar 

  • Weiller C, Jüptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Müller S, Diener HC, Thilmann AF (1996) Brain representation of active and passive movements. Neuroimage 4(2):105–110

    Article  PubMed  CAS  Google Scholar 

  • Weiller C, Bormann T, Saur D, Musso M, Rijntjes M (2011) How the ventral pathway got lost—and what its recovery might mean. Brain Lang 118(1–2):29–39

    Article  PubMed  Google Scholar 

  • Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3(Suppl):1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358:593–602

    Article  PubMed  Google Scholar 

  • Zaitsev M, Dolf C, Sakas G, Henning J, Speck O (2006) Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 31:1038–1050

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Bundesministerium für Bildung und Forschung [BMBF-research collaboration Neuroimaging Centers (01GO0513)] and the Deutsche Forschungsgemeinschaft (Grant WE 1352/14-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus-Sebastian Vry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vry, MS., Saur, D., Rijntjes, M. et al. Ventral and dorsal fiber systems for imagined and executed movement. Exp Brain Res 219, 203–216 (2012). https://doi.org/10.1007/s00221-012-3079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3079-7

Keywords

Navigation