Skip to main content
Log in

Acquiring functional object knowledge through motor imagery?

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A widely investigated question in the research on the acquisition of novel functional object representations is the role of the action system. Whereas most studies so far have investigated the role of active action training on the acquisition of object representation, we investigated whether people are able to acquire object representations by just imagining the use of novel objects, given that previous findings suggested that executed and imagined actions share a common representational format. To this end, participants trained the use of novel objects in a motor imagery condition. Training comprised the particular grip applied to the objects and the objects’ typical end location. Subsequently, participants’ object representations were assessed by means of an object detection task. The results show that participants responded slower when the novel objects were presented at functionally incorrect end locations, indicating that the participants had acquired functional knowledge about object use. Yet, there was no effect of correct versus incorrect grip. Altogether, the findings suggest that motor imagery can facilitate the acquisition of novel object representations, but point also to differences between first-hand action training and training by imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aglioti SM, Cesari P, Romani M, Urgesi C (2008) Action anticipation and motor resonance in elite basketball players. Nat Neurosci 11:1109–1116

    Article  PubMed  CAS  Google Scholar 

  • Allport DA (1985) Distributed memory, modular subsystems and dysphasie. In: Newman SK, Epstein R (eds) Current perspectives in dysphasia. Churchill Livingstone, Edinburgh, pp 32–60

    Google Scholar 

  • Barrett TM, Davis EF, Needham A (2007) Learning about tools in infancy. Dev Psych 43:352–368

    Article  Google Scholar 

  • Bekkering H, Wohlschläger A, Gattis M (2000) Imitation of gestures in children is goal-direct. Q J Exp Psych 53A:153–164

    Google Scholar 

  • Binkofski F, Buccino G (2006) The role of ventral premotor cortex in action execution and action understanding. J Physiol Paris 99:396–405

    Article  PubMed  Google Scholar 

  • Bird G, Brindley R, Leighton J, Heyes C (2007) General processes, rather than “Goals”, explain imitations errors. J Exp Psych Hum Perc Perf 33:1158–1169

    Article  Google Scholar 

  • Boronat CB, Buxbaum LJ, Coslett HB, Tang K, Saffran EM, Kimberg DY, Detre JA (2005) Distinctions between manipulation and function knowledge of objects: evidence from functional magnetic resonance imaging. Cogn Brain Res 23:361–373

    Article  Google Scholar 

  • Bub DN, Masson MEJ, Cree GS (2008) Evocation of functional and volumetric gestural knowledge by objects and words. Cogn 106:27–58

    Article  Google Scholar 

  • Buxbaum LJ, Saffran EM (2002) Knowledge of object manipulation and object function: dissociations in apraxic and nonapraxic subjects. Brain Lang 82:179–199

    Article  PubMed  Google Scholar 

  • Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. NeuroImage 12:478–484

    Article  PubMed  CAS  Google Scholar 

  • Conolly K, Dalgleish M (1989) The emergence of a tool-using skill in infancy. Dev Psych 25:894–912

    Article  Google Scholar 

  • Cramer SC, Orr ELR, Cohen MJ, Lacourse MG (2007) Effects of motor imagery training after chronic, complete spinal cord injury. Exp Brain Res 177:233–242

    Article  PubMed  Google Scholar 

  • Creem SH, Proffitt DR (2001) Grasping objects by their handles: a necessary interaction between cognition and action. J Exp Psychol Hum Percept Perform 27:218–228

    Article  PubMed  CAS  Google Scholar 

  • Csibra G, Gergely G (2007) ‘Obsessed with goals’: functions and mechanisms of teleological interpretation of actions in humans. Act Psych 124:60–78

    Article  Google Scholar 

  • de Lange FP, Roelofs K, Toni I (2008) Motor imagery: a window into the mechanisms and alterations of the motor system. Cortex 44:494–506

    Article  PubMed  Google Scholar 

  • Dietrich A (2008) Imaging the imagination: the trouble with motor imagery. Methods 45:319–324

    Article  PubMed  CAS  Google Scholar 

  • Dijkerman HC, Ietswaart M, Johnston M, MacWalter RS (2004) Does motor imagery training improve hand function in chronic stroke patients? A pilot study. Clin Rehab 18:538–549

    Article  CAS  Google Scholar 

  • Eliassen JC, Souza T, Sanes JN (2003) Experience-dependent activation patterns in human brain during visual-motor associative learning. J Neurosci 23:10540–10547

    PubMed  CAS  Google Scholar 

  • Elsner B, Pauen S (2007) Social learning of artefact function in 12- and 15-month-olds. Eur J Dev Psych 4:80–99

    Article  Google Scholar 

  • Grafton ST, Hamilton AF (2007) Evidence for a distributed hierarchy of action representation in the brain. Hum Mov Sci 26:590–616

    Article  PubMed  Google Scholar 

  • Grezes J, Decety J (2002) Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia 40:212–222

    Article  PubMed  CAS  Google Scholar 

  • Helbig HB, Graf M, Kiefer M (2006) The role of action representations in visual object recognition. Exp Brain Res 174:221–228

    Article  PubMed  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–937

    Article  PubMed  CAS  Google Scholar 

  • Imazu S, Sugio T, Tanaka S, Inui T (2007) Differences between actual and imagined usage of chopsticks: an fMRI study. Cer Cortex 43:301–307

    Google Scholar 

  • Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:S103–S109

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Frey SH (2004) The neural bases of complex tool use in humans. Trends Cogn Sci 8:71–78

    Article  PubMed  Google Scholar 

  • Kellenbach ML, Brett M, Patterson K (2003) Actions speak louder than functions: the importance of manipulability and action in tool representation. J Cog Neurosci 15:30–46

    Article  Google Scholar 

  • Kiefer M, Sim E-J, Liebich S, Hauk O, Tanaka J (2007) Experience-dependent plasticity of conceptual representations in human sensory-motor areas. J Cogn Neurosci 19:525–542

    Article  PubMed  Google Scholar 

  • Lockman JJ (2000) A perception-action perspective on tool use development. Child Dev 71:137–144

    Article  PubMed  CAS  Google Scholar 

  • Lorey B, Pilgramm S, Bischoff M, Stark R, Vaiti D, Kindermann S, Munzert J, Zentgraf K (2011) Activation of the parieto-premotor network is associated with vivid motor imagery—a parametric fMRI study. PLoS ONE 6(5):e20368

    Article  PubMed  CAS  Google Scholar 

  • Majdandzic J, Grol MJ, van Schie HT, Verhagen L, Toni I, Bekkering H (2007) The role of immediate and final goals in action planning: an fMRI study. Neuroimage 37:589–598

    Article  PubMed  Google Scholar 

  • Martin A (2007) The representation of object concepts in the brain. Ann Rev Psych 58:25–45

    Article  Google Scholar 

  • Massen C (2009) Observing human interaction with physical devices. Exp Brain Res 199:49–58

    Article  PubMed  Google Scholar 

  • Massen C, Prinz W (2009) Movements, actions and tool-use actions: an ideomotor approach to imitation. Phil Trans Roy Soc. Biol Sci 364:2349–2358

    Article  Google Scholar 

  • McCarty ME, Clifton RK, Collard RR (2001) The beginnings of tool use by infants and toddlers. Infancy 2:233–256

    Article  Google Scholar 

  • Mounoud P, Duscherer K, Moy G, Perraudin S (2007) The influence of action perception on object recognition: a developmental study. Dev Sci 10:836–852

    Article  PubMed  Google Scholar 

  • Munzert J, Lorey B, Zentgraf K (2009) Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev 60:306–326

    Article  PubMed  Google Scholar 

  • Paulus M, Hunnius S, Bekkering H (2011a) Can 14- to 20-month-old children learn that a tool serves multiple purposes? A developmental study on children’s action goal prediction. Vis Res 51:955–960

    Article  PubMed  Google Scholar 

  • Paulus M, Hunnius S, Vissers M, Bekkering H (2011b) Bridging the gap between the other and me: the functional role of motor resonance and action effects in infants’ imitation. Dev Sci 14:901–910

    Article  PubMed  Google Scholar 

  • Paulus M, Lindemann O, Bekkering H (2009) Motor simulation in verbal knowledge acquisition. Q J Exp Psych 62:2298–2305

    Article  Google Scholar 

  • Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, di Prampero PE (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16:7688–7698

    PubMed  CAS  Google Scholar 

  • Reiser M, Büsch D, Munzert J (2011) Strength gains by motor imagery with different ratios of physical to mental practice. Front Psych 2:194

    Google Scholar 

  • Rosenbaum D, Vaughan J, Barnes HJ, Jorgensen MJ (1992) Time course of movement planning: selection of handgrips for object manipulation. J Exp Psych Learn Mem Cog 18:1058–1073

    Article  CAS  Google Scholar 

  • Schnitzler A, Salenius S, Salmelin R, Jousmäki V, Hari R (1997) Involvement of primary motor cortex in motor imagery: a neuromagnetic study. Neuroimage 6:201–208

    Article  PubMed  CAS  Google Scholar 

  • Stevens JA, Stoykov MEP (2003) Using motor imagery in the rehabilitation of hemiparesis. Arch Phys Med Rehab 84:1090–1092

    Article  Google Scholar 

  • Sülzenbrück S, Heuer H (2011) Type of visual feedback during practice influences the precision of the acquired internal model of a complex visuo-motor transformation. Ergonomics 54:34–46

    Article  PubMed  Google Scholar 

  • Sutter C, Müsseler J, Bardos L (2011) Effects of sensorimotor transformations with graphical input devices. Behav Inf Tech 30:415–424

    Article  Google Scholar 

  • Szameitat AJ, Shen S, Sterr A (2007a) Effector-dependent activity in the left dorsal premotor cortex in motor imagery. Eur J Neurosci 26:3303–3308

    Article  PubMed  Google Scholar 

  • Szameitat AJ, Shen S, Sterr A (2007b) Motor imagery of complex every day movements. An fMRI study. NeuroImage 34:702–713

    Article  PubMed  Google Scholar 

  • Träuble B, Pauen S (2007) The role of functional information for infant categorization. Cogn Psych 105:362–379

    Google Scholar 

  • Tucker M, Ellis R (2001) The potentiation of grasp types during visual object categorization. Vis Cogn 8:769–800

    Article  Google Scholar 

  • van Elk M, Paulus M, Pfeiffer C, van Schie HT, Bekkering H (2011) Learning to use novel objects: a training study on the acquisition of novel action representations. Consc Cogn 20:1304–1314

    Article  Google Scholar 

  • van Elk M, van Schie HT, Bekkering H (2008) Conceptual knowledge for understanding other’s actions is organized primarily around action goals. Exp Brain Res 189:99–107

    Article  PubMed  Google Scholar 

  • van Elk M, van Schie HT, Bekkering H (2009) Action semantic knowledge about objects is supported by functional motor activation. J Exp Psych Hum Perc Perf 35:1118–1128

    Article  Google Scholar 

  • van Schie HT, Bekkering H (2007) Neural mechanisms underlying immediate and final action goals in object use reflected by slow wave brain potentials. Brain Res 1148:183–197

    Article  PubMed  Google Scholar 

  • Zentgraf K, Munzert J, Bischoff M, Newman-Norlund RD (2011) Simulation during observation of human actions—theories, empirical studies, applications. Vis Res 51:827–835

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Paulus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulus, M., van Elk, M. & Bekkering, H. Acquiring functional object knowledge through motor imagery?. Exp Brain Res 218, 181–188 (2012). https://doi.org/10.1007/s00221-012-3061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3061-4

Keywords

Navigation