Skip to main content

Remapping of the line motion illusion across eye movements

Abstract

Although motion processing in the brain has been classically studied in terms of retinotopically defined receptive fields, recent evidence suggests that motion perception can occur in a spatiotopic reference frame. We investigated the underlying mechanisms of spatiotopic motion perception by examining the role of saccade metrics as well as the capacity of trans-saccadic motion. To this end, we used the line motion illusion (LMI), in which a straight line briefly shown after a high contrast stimulus (inducer) is perceived as expanding away from the inducer position. This illusion provides an interesting test of spatiotopic motion because the neural correlates of this phenomenon have been found early in the visual cortex and the effect does not require focused attention. We measured the strength of LMI both with stable fixation and when participants were asked to perform a 10° saccade during the blank ISI between the inducer and the line. A strong motion illusion was found across saccades in spatiotopic coordinates. When the inducer was presented near in time to the saccade cue, saccadic latencies were longer, saccade amplitudes were shorter, and the strength of reported LMI was consistently reduced. We also measured the capacity of the trans-saccadic LMI by varying the number of inducers. In contrast to a visual-spatial memory task, we found that the LMI was largely eliminated by saccades when two or more inducers were displayed. Together, these results suggest that motion perceived in non-retinotopic coordinates depends on an active, saccade-dependent remapping process with a strictly limited capacity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59(4):390–412

    Article  Google Scholar 

  • Bakola S, Gregoriou GG, Moschovakis AK, Raos V, Savaki HE (2007) Saccade-related information in the superior temporal motion complex: quantitative functional mapping in the monkey. J Neurosci 27(9):2224–2229

    PubMed  Article  CAS  Google Scholar 

  • Berman R, Colby C (2009) Attention and active vision. Vision Res 49(10):1233–1248

    PubMed  Article  Google Scholar 

  • Boi M, Öğmen H, Herzog MH (2011) Motion and tilt aftereffects occur largely in retinal, not in object, coordinates in the Ternus-Pikler display. J Vis 11(3):7, 1–11. http://www.journalofvision.org/content/11/3/7. doi:10.1167/11.3

  • Bompas A, Sumner P (2009) Temporal dynamics of saccadic distraction. J Vis 9(9):1–14, 17. http://journalofvision.org/9/9/17/. doi:10.1167/9.9.17

    Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10(4):433–436

    PubMed  Article  CAS  Google Scholar 

  • Bremmer F, Kubischik M, Hoffmann KP, Krekelberg B (2009) Neural dynamics of saccadic suppression. J Neurosci 29(40):12374–12383

    PubMed  Article  CAS  Google Scholar 

  • Burr DC, Thompson P (2011) Motion psychophysics: 1985–2010. Vis Res 51:1431–1456

    PubMed  Article  Google Scholar 

  • Castet E (2010) Perpection of intra-saccadic motion. In: Ilg UJ, Masson GS (eds) Dynamics of visual motion processing, neuronal, behavioral and computational approaches. Springer, New York

    Google Scholar 

  • Cavanagh P, Hunt AR, Afraz A, Rolfs M (2010) Visual stability based on remapping of attention pointers. Trends Cogn Sci 14(4):147–153

    PubMed  Article  Google Scholar 

  • Cloherty SL, Mustari MJ, Rosa MGP, Ibbotson MR (2010) Effects of saccades on visual processing in primate MSTd. Vis Res 50(24):2683–2691

    PubMed  Article  Google Scholar 

  • Collins T (2010) Extra retinal signal metrics in multiple-saccade sequences. J Vis 10(14):7, 1–14. http://www.journalofvision.org/content/10/14/7. doi:10.1167/10.14.7

    Google Scholar 

  • Cornelissen FW, Peters EM, Palmer J (2002) The eye link toolbox: eye tracking with MATLAB and the psychophysics toolbox. Behav Res Methods Instrum Comput 34:613–617

    PubMed  Article  Google Scholar 

  • Crapse TB, Sommer MA (2008) Corollary discharge across the animal kingdom. Nat Rev Neurosci 9(8):587–600

    PubMed  Article  CAS  Google Scholar 

  • Currie CB, McConkie GW, Carlson-Radvansky LA, Irwin DE (2000) The role of the saccade target object in the perception of a visually stable world. Percept Psychophys 62(4):673–683

    PubMed  Article  CAS  Google Scholar 

  • d’Avossa G, Tosetti M, Crespi S, Biagi L, Burr DC, Morrone MC (2007) Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat Neurosci 10(2):249–255

    PubMed  Article  Google Scholar 

  • Ezzati A, Golzar A, Afraz AS (2008) Topography of the motion aftereffect with and without eye movements. J Vis 8(14):2316–2321. http://www.journalofvision.org/8/14/23/. doi:10.1167/8.14.23

    Google Scholar 

  • Fracasso A, Caramazza A, Melcher D (2010) Continuous perception of motion and shape across saccadic eye movements. J Vis 10(13):117–141. http://www.journalofvision.org/content/10/13/14. doi:10.1167/10.13.14

    Google Scholar 

  • Fuller S, Carrasco M (2009) Perceptual consequences of visual performance fields: The case of the line motion illusion. J Vision 9(4):117–131. http://www.journalofvision.org/9/4/13/. doi:10.1167/9.4.13

    Google Scholar 

  • Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28(15):3988–3999

    PubMed  Article  CAS  Google Scholar 

  • Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484

    PubMed  Article  CAS  Google Scholar 

  • Ibbotson MR, Crowder NA, Cloherty SL, Price NSC, Mustari MJ (2008) Saccadic modulation of neural responses: possible roles in saccadic suppression, enhancement, and time compression. J Neurosci 28(43):10952–10960

    PubMed  Article  CAS  Google Scholar 

  • Irwin DE (1991) Information integration across saccadic eye movements. Cogn Psychol 23(3):420–456

    PubMed  Article  CAS  Google Scholar 

  • Jaeger TF (2008) Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. J Mem Lang 59(4):434–446

    PubMed  Article  Google Scholar 

  • Jancke D, Chavane F, Naaman S, Grinvald A (2004) Imaging cortical correlates of illusion in early visual cortex. Nature 428(6981):423–426

    PubMed  Article  CAS  Google Scholar 

  • Joiner WM, Cavanaugh J, Wurtz RH (2011) Modulation of shifting receptive field activity in frontal eye field by visual salience. J Neurophysiol 106(3):1179–1190

    PubMed  Article  Google Scholar 

  • Kaunitz L, Fracasso A, Melcher D (2011) Unseen complex motion is modulated by attention and generates a visible aftereffect. J Vis 11(13):1–9, 10. http://www.journalofvision.org/content/11/13/10. doi:10.1167/11.13.10

    Google Scholar 

  • Kawahara J, Yokosawa K, Nishida S, Sato T (1996) Illusory line motion in visual search: attentional facilitation or apparent motion? Perception 25(8):901–920

    PubMed  Article  CAS  Google Scholar 

  • Knapen T, Rolfs M, Cavanagh P (2009) The reference frame of the motion aftereffect is retinotopic. J Vis 9(5):1–6, 16. http://journalofvision.org/9/5/16/. doi:10.1167/9.5.16

    Google Scholar 

  • Mathot S, Theeuwes J (2010) Evidence for the predictive remapping of visual attention. Exp Brain Res 200(1):117–122

    PubMed  Article  Google Scholar 

  • Matin E (1974) Saccadic suppression: a review and an analysis. Psychol Bull 81:899–917

    PubMed  Article  CAS  Google Scholar 

  • Melcher D (2009) Selective attention and the active remapping of object features in trans-saccadic perception. Vis Res 49:1249–1255

    PubMed  Article  Google Scholar 

  • Melcher D (2011) Visual stability. Phil Trans R Soc B 366:468–475

    PubMed  Article  Google Scholar 

  • Melcher D, Colby CL (2008) Trans-saccadic perception. Trends Cogn Sci 12(12):466–473

    PubMed  Article  Google Scholar 

  • Melcher D, Morrone MC (2003) Spatiotopic temporal integration of visual motion across saccadic eye movements. Nat Neurosci 6(8):877–881

    PubMed  Article  CAS  Google Scholar 

  • Munoz DP, Waitzman DM, Wurtz RH (1996) Activity of neurons in monkey superior colliculus during interrupted saccades. J Neurophysiol 75:2562–2580

    PubMed  CAS  Google Scholar 

  • Niemeier M, Crawford JD, Tweed D (2003) Optimal transsaccadic integration explains distorted spatial perception. Nature 422(6927):76–80

    PubMed  Article  CAS  Google Scholar 

  • Ong WS, Hooshvar N, Zhang MS, Bisley JW (2009) Psychophysical evidence for spatiotopic processing in area MT in a short-term memory for motion task. J Neurophysiol 102(4):2435–2440

    PubMed  Article  Google Scholar 

  • Pelli DG (1997) The video toolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10(4):437–442

    PubMed  Article  CAS  Google Scholar 

  • Prime Sl, Vesia M, Crawford JD (2011) Cortical mechanisms for trans-saccadic memory and integration of multiple object features. Philos T R Soc B 366:540–553

    Article  Google Scholar 

  • Rock I, Ebenholtz S (1962) Stroboscopic movement based on change of phenomenal rather than retinal location. Am J Psychol 75:193–207

    PubMed  Article  CAS  Google Scholar 

  • Skottun BC (2011) Amplitude spectra of line-motion stimuli. Perception 40(6):656–673

    PubMed  Article  Google Scholar 

  • Sommer MA, Wurtz RH (2002) A pathway in primate brain for internal monitoring of movements. Science 296(5572):1480–1482

    PubMed  Article  CAS  Google Scholar 

  • Sommer MA, Wurtz RH (2004) What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J Neurophysiol 91(3):1403–1423

    PubMed  Article  Google Scholar 

  • Sommer MA, Wurtz RH (2006) Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444(7117):374–377

    PubMed  Article  CAS  Google Scholar 

  • Sommer MA, Wurtz RH (2008) Brain circuits for the internal monitoring of movements. Annu Rev Neurosci 31:317–338

    PubMed  Article  CAS  Google Scholar 

  • Szinte M, Cavanagh P (2011) Spatiotopic apparent motion reveals local variations in space constancy. J Vis 11(2):16

    Article  Google Scholar 

  • Vogel EK, Woodman GF, Luck SJ (2001) Storage of features, conjunctions, and objects in visual working memory. J Exp Psychol Hum 27:92–114

    Article  CAS  Google Scholar 

  • Von Grunau M, Dube S, Kwas M (1996) Two contributions to motion induction: a preattentive effect and facilitation due to attentional capture. Vis Res 36(16):2447–2457

    Article  Google Scholar 

  • Walker R, Deubel H, Schneider WX, Findlay JM (1997) Effect of remote distractors on saccade programming: evidence for an extended fixation zone. J Neurophysiol 78(2):1108–1119

    PubMed  CAS  Google Scholar 

  • Wenderoth P, Wiese M (2008) Retinotopic encoding of the direction aftereffect. Vis Res 48(19):1949–1954

    PubMed  Article  Google Scholar 

  • Wurtz RH, Joiner WM, Berman RA (2011) Neuronal mechanisms for visual stability: progress and problems. Phil Trans R Soc B 366:503–593

    Article  Google Scholar 

  • Zhang E, Li W (2010) Perceptual learning beyond retinotopic reference frame. Proc Natl Acad Sci USA 107:15969–15974

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been realized thanks to the support from the Provincia Autonoma di Trento and the Fondazione Cassa di Risparmio di Trento e Rovereto. D.M. was supported by the Italian Ministry of Education and Research, MIUR projects PRIN 2007 and PRIN 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Melcher.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Melcher, D., Fracasso, A. Remapping of the line motion illusion across eye movements. Exp Brain Res 218, 503–514 (2012). https://doi.org/10.1007/s00221-012-3043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3043-6

Keywords

  • Remapping
  • Line motion illusion
  • Visual stability
  • Eye movements