Skip to main content
Log in

Rapid changes in corticospinal excitability during force field adaptation of human walking

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Force field adaptation of locomotor muscle activity is one way of studying the ability of the motor control networks in the brain and spinal cord to adapt in a flexible way to changes in the environment. Here, we investigate whether the corticospinal tract is involved in this adaptation. We measured changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in the tibialis anterior (TA) muscle before, during, and after subjects adapted to a force field applied to the ankle joint during treadmill walking. When the force field assisted dorsiflexion during the swing phase of the step cycle, subjects adapted by decreasing TA EMG activity. In contrast, when the force field resisted dorsiflexion, they increased TA EMG activity. After the force field was removed, normal EMG activity gradually returned over the next 5 min of walking. TA MEPs elicited in the early swing phase of the step cycle were smaller during adaptation to the assistive force field and larger during adaptation to the resistive force field. When elicited 5 min after the force field was removed, MEPs returned to their original values. The changes in TA MEPs were larger than what could be explained by changes in background TA EMG activity. These effects seemed specific to walking, as similar changes in TA MEP were not seen when seated subjects were tested during static dorsiflexion. These observations suggest that the corticospinal tract contributes to the adaptation of walking to an external force field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alain S, Cantin B, Bouyer LJ (2005) Human cutaneous reflexes while walking in an elastic force field applied to the ankle. Soc Neurosci Abstr 864.12

    Google Scholar 

  • Alain S, Barthelemy D, Grey MJ, Bouyer LJ, Richards CL, Nielsen JB (2007) Rapid, task-specific modifications of cortico-spinal excitability during adaptation of human locomotion to elastic force fields applied to the ankle. Soc Neurosci Abstr 924.1

    Google Scholar 

  • Amos A, Armstrong DM, Marple-Horvat DE (1989) Responses of motor cortical neurones in the cat to unexpected perturbations of locomotion. Neurosci Lett 104:147–151

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM, Marple-Horvat DE (1996) Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion. Can J Physiol Pharmacol 74:443–455

    PubMed  CAS  Google Scholar 

  • Barsi GI, Popovic DB, Tarkka IM, Sinkjaer T, Grey MJ (2008) Cortical excitability changes following grasping exercise augmented with electrical stimulation. Exp Brain Res 191:57–66

    Article  PubMed  Google Scholar 

  • Blanchette A, Bouyer LJ (2009) Timing-specific transfer of adapted muscle activity after walking in an elastic force field. J Neurophysiol 102:568–577

    Article  PubMed  Google Scholar 

  • Bouyer LJ (2011) Challenging the adaptive capacity of rhythmic movement control: from denervation to force field adaptation. Prog Brain Res 188:119–134

    Article  PubMed  Google Scholar 

  • Bouyer L, Rossignol S (2001) Spinal cord plasticity associated with locomotor compensation to peripheral nerve lesions in the cat. In: Patterson MM, Grau JW (eds) Spinal cord plasticity: Alterations in reflex function. Kluwer Academic Publishers, Boston, pp 207–224

    Chapter  Google Scholar 

  • Bouyer LJ, Rossignol S (2003a) Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats. J Neurophysiol 90:3625–3639

    Article  PubMed  CAS  Google Scholar 

  • Bouyer LJ, Rossignol S (2003b) Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats. J Neurophysiol 90:3640–3653

    Article  PubMed  CAS  Google Scholar 

  • Bouyer LJ, Whelan PJ, Pearson KG, Rossignol S (2001) Adaptive locomotor plasticity in chronic spinal cats after ankle extensors neurectomy. J Neurosci 21:3531–3541

    PubMed  CAS  Google Scholar 

  • Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M (1999) Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol 81:129–139

    PubMed  CAS  Google Scholar 

  • Carrier L, Brustein E, Rossignol S (1997) Locomotion of the hindlimbs after neurectomy of ankle flexors in intact and spinal cats: model for the study of locomotor plasticity. J Neurophysiol 77:1979–1993

    CAS  Google Scholar 

  • Choi JT, Bastian AJ (2007) Adaptation reveals independent control networks for human walking. Nat Neurosci 10:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Christensen LO, Morita H, Petersen N, Nielsen J (1999) Evidence suggesting that a transcortical reflex pathway contributes to cutaneous reflexes in the tibialis anterior muscle during walking in man. Exp Brain Res 124:59–68

    Article  PubMed  CAS  Google Scholar 

  • Christensen LO, Andersen JB, Sinkjaer T, Nielsen J (2001) Transcranial magnetic stimulation and stretch reflexes in the tibialis anterior muscle during human walking. J Physiol 531:545–557

    Article  PubMed  CAS  Google Scholar 

  • Cote MP, Gossard JP (2004) Step training-dependent plasticity in spinal cutaneous pathways. J Neuro sci 24:11317–11327

    CAS  Google Scholar 

  • Cumming G, Finch S (2005) Inference by eye: confidence intervals and how to read pictures of data. Am Psychol 60:170–180

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Meglio M, Cioni B, Tonali P, Rothwell JC (2001) Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans. J Physiol 537:1047–1058

    PubMed  CAS  Google Scholar 

  • Drew T, Jiang W, Kably B, Lavoie S (1996) Role of the motor cortex in the control of visually triggered gait modifications. Can J Physiol Pharmacol 74:426–442

    PubMed  CAS  Google Scholar 

  • Drew T, Jiang W, Widajewicz W (2002) Contributions of the motor cortex to the control of the hindlimbs during locomotion in the cat. Brain Res Brain Res Rev 40:178–191

    Article  PubMed  Google Scholar 

  • Drew T, Kalaska J, Krouchev N (2008) Muscle synergies during locomotion in the cat: a model for motor cortex control. J Physiol 586:1239–1245

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Tax AA, Trippel M, Dietz V (1992) Phase-dependent reversal of reflexly induced movements during human gait. Exp Brain Res 90:404–414

    Article  PubMed  CAS  Google Scholar 

  • Edgerton VR, Tillakaratne NJ, Bigbee AJ, De Leon RD, Roy RR (2004) Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 27:145–167

    Article  PubMed  CAS  Google Scholar 

  • Emken JL, Reinkensmeyer DJ (2005) Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng 13:33–39

    Article  PubMed  Google Scholar 

  • Faist M, Hoefer C, Hodapp M, Dietz V, Berger W, Duysens J (2006) In humans Ib facilitation depends on locomotion while suppression of Ib inhibition requires loading. Brain Res 1076:87–92

    Article  PubMed  CAS  Google Scholar 

  • Fortin K, Blanchette A, McFadyen BJ, Bouyer LJ (2009) Effects of walking in a force field for varying durations on after effects and on next day performance. Exp Brain Res 199:145–155

    Article  PubMed  Google Scholar 

  • Graham-Brown T (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B Biol Sci 84:308–319

    Article  Google Scholar 

  • Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8:233–261

    Article  PubMed  CAS  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374

    Article  PubMed  CAS  Google Scholar 

  • Hultborn H, Nielsen JB (2007) Spinal control of locomotion–from cat to man. Acta Physiol (Oxf) 189:111–121

    Article  CAS  Google Scholar 

  • Jayaram G, Galea JM, Bastian AJ, Celnik P (2011) Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. [Epub ahead of print]

  • Kernell D, Hultborn H (1990) Synaptic effects on recruitment gain: a mechanism of importance for the input-output relations of motoneurone pools? Brain Res 507:176–179

    Article  PubMed  CAS  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313

    PubMed  CAS  Google Scholar 

  • Lam T, Anderschitz M, Dietz V (2006) Contribution of feedback and feedforward strategies to locomotor adaptations. J Neurophysiol 95:766–773

    Article  PubMed  Google Scholar 

  • Loftus GR, Masson MEJ (1994) Using confidence intervals in within-subject designs. Psych Bull Review 1:476–490

    Article  Google Scholar 

  • Malone LA, Bastian AJ (2010) Thinking about walking: effects of conscious correction versus distraction on locomotor adaptation. J Neurophysiol 103(4):1954–1962

    Article  PubMed  Google Scholar 

  • Marchand-Pauvert V, Nielsen JB (2002a) Modulation of heteronymous reflexes from ankle dorsiflexors to hamstring muscles during human walking. Exp Brain Res 142:402–408

    Article  PubMed  CAS  Google Scholar 

  • Marchand-Pauvert V, Nielsen JB (2002b) Modulation of non-monosynaptic excitation from ankle dorsiflexor afferents to quadriceps motoneurones during human walking. J Physiol 538:647–657

    Article  PubMed  CAS  Google Scholar 

  • Masson MEJ, Loftus GR (2003) Using confidence intervals for graphically based data interpretation. Can J Exp Psych 57:203–220

    Article  Google Scholar 

  • Matthews PB (1999) The effect of firing on the excitability of a model motoneurone and its implications for cortical stimulation. J Physiol 518(Pt 3):867–882

    Article  PubMed  CAS  Google Scholar 

  • McNeil CJ, Martin PG, Gandevia SC, Taylor JL (2009) The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue. J Physiol 587:5601–5612

    Google Scholar 

  • Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26:9107–9116

    Article  PubMed  CAS  Google Scholar 

  • Muir GD, Steeves JD (1995) Phasic cutaneous input facilitates locomotor recovery after incomplete spinal injury in the chick. J Neurophysiol 74:358–368

    PubMed  CAS  Google Scholar 

  • Nielsen JB (2003) How we walk: central control of muscle activity during human walking. Neuroscientist 9:195–204

    Article  PubMed  Google Scholar 

  • Nielsen JB, Cohen LG (2008) The olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for high-performance sports? J Physiol 586:65–70

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Petersen N (1995) Evidence favouring different descending pathways to soleus motoneurones activated by magnetic brain stimulation in man. J Physiol 486(Pt 3):779–788

    PubMed  CAS  Google Scholar 

  • Nielsen J, Petersen N, Deuschl G, Ballegaard M (1993) Task-related changes in the effect of magnetic brain stimulation on spinal neurones in man. J Physiol 471:223–243

    PubMed  CAS  Google Scholar 

  • Nielsen J, Petersen N, Fedirchuk B (1997) Evidence suggesting a transcortical pathway from cutaneous foot afferents to tibialis anterior motoneurones in man. J Physiol 501(Pt 2):473–484

    Article  PubMed  CAS  Google Scholar 

  • Noble JW, Prentice SD (2006) Adaptation to unilateral change in lower limb mechanical properties during human walking. Exp Brain Res 169:482–495

    Article  PubMed  Google Scholar 

  • Noel M, Fortin K, Bouyer LJ (2009) Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance. J Neuroeng Rehabil 6:16–17

    Article  PubMed  Google Scholar 

  • Pearson KG (2000) Neural adaptation in the generation of rhythmic behavior. AnnuRevPhysiol 62:723–753

    CAS  Google Scholar 

  • Perez MA, Lungholt BK, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159:197–205

    Article  PubMed  Google Scholar 

  • Petersen N, Christensen LO, Morita H, Sinkjaer T, Nielsen J (1998) Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J Physiol 512(Pt 1):267–276

    Article  PubMed  CAS  Google Scholar 

  • Petersen NT, Butler JE, Marchand-Pauvert V, Fisher R, Ledebt A, Pyndt HS, Hansen NL, Nielsen JB (2001) Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J Physiol 537:651–656

    Article  PubMed  CAS  Google Scholar 

  • Petersen NT, Taylor JL, Butler JE, Gandevia SC (2003) Depression of activity in the corticospinal pathway during human motor behavior after strong voluntary contractions. J Neurosci 23:7974–7980

    PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny E (2002) Propriospinal transmission of part of the corticospinal excitation in humans. Muscle Nerve 26:155–172

    Article  PubMed  Google Scholar 

  • Press WH (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, New York

  • Reisman DS, Wityk R, Silver K, Bastian AJ (2007) Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain 130:1861–1872

    Article  PubMed  Google Scholar 

  • Rossignol S, Brustein E, Bouyer L, Barthelemy D, Langlet C, Leblond H (2004) Adaptive changes of locomotion after central and peripheral lesions. Can J Physiol Pharmacol 82:617–627

    Article  PubMed  CAS  Google Scholar 

  • Rossignol S, Barriere G, Frigon A, Barthelemy D, Bouyer L, Provencher J, Leblond H, Bernard G (2008) Plasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions. Brain Res Rev 57:228–240

    Article  PubMed  Google Scholar 

  • Sawicki GS, Domingo A, Ferris DP (2006) The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury. J Neuroeng Rehabil 3:3–4

    Article  PubMed  Google Scholar 

  • Schneider C, Lavoie BA, Barbeau H, Capaday C (2004) Timing of cortical excitability changes during the reaction time of movements superimposed on tonic motor activity. J Appl Physiol 97:2220–2227

    Article  PubMed  Google Scholar 

  • Schubert M, Curt A, Jensen L, Dietz V (1997) Corticospinal input of human gait: modulation of magnetically evoked motor responses. Exp Brain Res 115:234–246

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Sherrington CS (1906) The integrative action of the nervous system. Charles Scribner’s Sons, New York

    Google Scholar 

  • Sinkjaer T, Andersen JB, Ladouceur M, Christensen LO, Nielsen JB (2000) Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J Physiol 523(3):817–827

    Article  PubMed  CAS  Google Scholar 

  • Thoroughman KA, Shadmehr R (1999) Electromyographic correlates of learning an internal model of reaching movements. J Neurosci 19:8573–8588

    PubMed  CAS  Google Scholar 

  • Whelan PJ, Pearson KG (1997) Plasticity in reflex pathways controlling stepping in the cat. JNeurophysiol 78:1643–1650

    CAS  Google Scholar 

  • Widajewicz W, Kably B, Drew T (1994) Motor cortical activity during voluntary gait modifications in the cat. II. Cells related to the hindlimbs. J Neurophysiol 72:2070–2089

    PubMed  CAS  Google Scholar 

  • Yang JF, Stein RB (1990) Phase-dependent reflex reversal in human leg muscles during walking. J Neurophysiol 63:1109–1117

    PubMed  CAS  Google Scholar 

  • Zuur AT, Christensen MS, Sinkjaer T, Grey MJ, Nielsen JB (2009) Tibialis anterior stretch reflex in early stance is suppressed by repetitive transcranial magnetic stimulation. J Physiol 587:1669–1676

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). DB received a Post-Doctoral Fellowship from the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Bouyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthélemy, D., Alain, S., Grey, M.J. et al. Rapid changes in corticospinal excitability during force field adaptation of human walking. Exp Brain Res 217, 99–115 (2012). https://doi.org/10.1007/s00221-011-2977-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2977-4

Keywords

Navigation