Skip to main content
Log in

Dynamic dominance varies with handedness: reduced interlimb asymmetries in left-handers

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Our previous studies of interlimb asymmetries during reaching movements have given rise to the dynamic-dominance hypothesis of motor lateralization. This hypothesis proposes that dominant arm control has become optimized for efficient intersegmental coordination, which is often associated with straight and smooth hand-paths, while non-dominant arm control has become optimized for controlling steady-state posture, which has been associated with greater final position accuracy when movements are mechanically perturbed, and often during movements made in the absence of visual feedback. The basis for this model of motor lateralization was derived from studies conducted in right-handed subjects. We now ask whether left-handers show similar proficiencies in coordinating reaching movements. We recruited right- and left-handers (20 per group) to perform reaching movements to three targets, in which intersegmental coordination requirements varied systematically. Our results showed that the dominant arm of both left- and right-handers were well coordinated, as reflected by fairly straight hand-paths and low errors in initial direction. Consistent with our previous studies, the non-dominant arm of right-handers showed substantially greater curvature and large errors in initial direction, most notably to targets that elicited higher intersegmental interactions. While the right, non-dominant, hand-paths of left-handers were slightly more curved than those of the dominant arm, they were also substantially more accurate and better coordinated than the non-dominant arm of right-handers. Our results indicate a similar pattern, but reduced lateralization for intersegmental coordination in left-handers. These findings suggest that left-handers develop more coordinated control of their non-dominant arms than right-handers, possibly due to environmental pressure for right-handed manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Annett M (1972) The distribution of manual asymmetry. Br J Psychol 63:343–358

    Article  PubMed  CAS  Google Scholar 

  • Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421

    Article  PubMed  Google Scholar 

  • Bagesteiro LB, Sainburg RL (2003) Nondominant arm advantages in load compensation during rapid elbow joint movements. J Neurophysiol 90:1503–1513

    Article  PubMed  Google Scholar 

  • Ballanger B, Boulinguez P (2009) EMG as a key tool to assess motor lateralization and hand reaction time asymmetries. J Neurosci Methods 179:85–89

    Article  PubMed  Google Scholar 

  • Benton AL, Meyers R, Polder GJ (1962) Some aspects of handedness. Psychiatr Neurol (Basel) 144:321–337

    Article  CAS  Google Scholar 

  • Borod JC, Caron HS, Koff E (1984) Left-handers and right-handers compared on performance and preference measures of lateral dominance. Br J Psychol 75(Pt 2):177–186

    Article  PubMed  Google Scholar 

  • Boulinguez P, Nougier V, Velay JL (2001a) Manual asymmetries in reaching movement control. I: study of right-handers. Cortex 37:101–122

    Article  PubMed  CAS  Google Scholar 

  • Boulinguez P, Velay JL, Nougier V (2001b) Manual asymmetries in reaching movement control. II: study of left-handers. Cortex 37:123–138

    Article  PubMed  CAS  Google Scholar 

  • Brinkman J, Kuypers HG (1972) Splitbrain monkeys: cerebral control of ipsilateral and contralateral arm, hand, and finger movements. Science 176:536–539

    Article  PubMed  CAS  Google Scholar 

  • Bryden MP (1977) Measuring handedness with questionnaires. Neuropsychologia 15:617–624

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Elliott D, Goodman D, Thyer L et al (1993) The role of impulse variability in manual-aiming asymmetries. Psychol Res 55:291–298

    Article  Google Scholar 

  • Carson RG, Chua R, Goodman D, Byblow WD, Elliott D (1995) The preparation of aiming movements. Brain Cogn 28:133–154

    Article  PubMed  CAS  Google Scholar 

  • Chapman LJ, Chapman JP (1987) The measurement of handedness. Brain Cogn 6:175–183

    Article  PubMed  CAS  Google Scholar 

  • Colebatch JG, Deiber MP, Passingham RE, Friston KJ, Frackowiak RS (1991) Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65:1392–1401

    PubMed  CAS  Google Scholar 

  • Coren S, Porac C (1977) Fifty centuries of right-handedness: the historical record. Science 198:631–632

    Article  PubMed  CAS  Google Scholar 

  • Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci U S A 94:14015–14018

    Article  PubMed  CAS  Google Scholar 

  • Desrosiers J, Bourbonnais D, Bravo G, Roy PM, Guay M (1996) Performance of the ‘unaffected’ upper extremity of elderly stroke patients. Stroke 27:1564–1570

    Article  PubMed  CAS  Google Scholar 

  • Duff SV, Sainburg RL (2007) Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position. Exp Brain Res 179:551–561

    Article  PubMed  Google Scholar 

  • Gilbert AN, Wysocki CJ (1992) Hand preference and age in the United States. Neuropsychologia 30:601–608

    Article  PubMed  CAS  Google Scholar 

  • Goble D (2007) Validity of using reaction time as a basis for determining motor laterality. J Neurophysiol 97:1868

    Article  PubMed  Google Scholar 

  • Goble DJ, Noble BC, Brown SH (2009) Proprioceptive target matching asymmetries in left-handed individuals. Exp Brain Res 197:403–408

    Article  PubMed  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99:97–111

    Article  PubMed  CAS  Google Scholar 

  • Haaland KY, Prestopnik JL, Knight RT, Lee RR (2004) Hemispheric asymmetries for kinematic and positional aspects of reaching. Brain 127:1145–1158

    Article  PubMed  Google Scholar 

  • Hebbal GV, Mysorekar VR (2006) Evaluation of some tasks used for specifying handedness and footedness. Percept Mot Skills 102:163–164

    Article  PubMed  Google Scholar 

  • Hull CJ (1936) A study of laterality test items. J Exp Educ 4:287–290

    Google Scholar 

  • Kawashima R, Itoh H, Ono S, Satoh K, Furumoto S, Gotoh R, Koyama M, Yoshioka S, Takahashi T, Takahashi K, Yanagisawa T, Fukuda H (1996) Changes in regional cerebral blood flow during self-paced arm and finger movements. A PET study. Brain Res 716:141–148

    Article  PubMed  CAS  Google Scholar 

  • Kawashima R, Inoue K, Sato K, Fukuda H (1997) Functional asymmetry of cortical motor control in left-handed subjects. Neuroreport 8:1729–1732

    Article  PubMed  CAS  Google Scholar 

  • Kilshaw D, Annett M (1983) Right- and left-hand skill I: effects of age, sex and hand preference showing superior skill in left-handers. Br J Psychol 74(Pt 2):253–268

    Article  PubMed  Google Scholar 

  • Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  PubMed  CAS  Google Scholar 

  • Klar AJ (1996) A single locus, RGHT, specifies preference for hand utilization in humans. Cold Spring Harb Symp Quant Biol 61:59–65

    PubMed  CAS  Google Scholar 

  • Koch HL (1933) A study of the nature, measurement, and determination of hand preference. Genetic Psychol Monogr 13:117–221

    Google Scholar 

  • Lenhard A, Hoffmann J (2007) Constant error in aiming movements without visual feedback is higher in the preferred hand. Laterality 12:227–238

    Article  PubMed  Google Scholar 

  • Levy J, Nagylaki T (1972) A model for the genetics of handedness. Genetics 72:117–128

    PubMed  CAS  Google Scholar 

  • Li A, Yetkin FZ, Cox R, Haughton VM (1996) Ipsilateral hemisphere activation during motor and sensory tasks [see comments]. AJNR Am J Neuroradiol 17:651–655

    PubMed  CAS  Google Scholar 

  • McManus IC (1985) Handedness, language dominance and aphasia: a genetic model. Psychol Med Monogr Suppl 8:1–40

    Article  PubMed  CAS  Google Scholar 

  • McManus IC, Moore J, Freegard M, Rawles R (2010) Science in the making: right hand, left hand. III: estimating historical rates of left-handedness. Laterality 15:186–208

    Article  PubMed  CAS  Google Scholar 

  • Mieschke PE, Elliott D, Helsen WF, Carson RG, Coull JA (2001) Manual asymmetries in the preparation and control of goal-directed movements. Brain Cogn 45:129–140

    Article  PubMed  CAS  Google Scholar 

  • Mutha PK, Sainburg RL, Haaland KY (2010) Coordination deficits in ideomotor apraxia during visually targeted reaching reflect impaired visuomotor transformations. Neuropsychologia 48:3855–3867

    Article  PubMed  Google Scholar 

  • Mutha PK, Sainburg RL, Haaland KY (2011) Left parietal regions are critical for adaptive visuomotor control. J Neurosci 31:6972–6981

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  • Raczkowski D, Kalat JW, Nebes R (1974) Reliability and validity of some handedness questionnaire items. Neuropsychologia 12:43–47

    Article  PubMed  CAS  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL (2005) Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213

    Article  PubMed  Google Scholar 

  • Sainburg RL, Duff SV (2006) Does motor lateralization have implications for stroke rehabilitation? J Rehabil Res Dev 43:311–322

    Article  PubMed  Google Scholar 

  • Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145:437–447

    Article  PubMed  Google Scholar 

  • Satz P, Achenbach K, Fennell E (1967) Correlations between assessed manual laterality and predicted speech laterality in a normal population. Neuropsychologia 5:295–310

    Article  Google Scholar 

  • Schaafsma SM, Riedstra BJ, Pfannkuche KA, Bouma A, Groothuis TG (2009) Epigenesis of behavioural lateralization in humans and other animals. Philos Trans R Soc Lond B Biol Sci 364:915–927

    PubMed  CAS  Google Scholar 

  • Schabowsky CN, Hidler JM, Lum PS (2007) Greater reliance on impedance control in the nondominant arm compared with the dominant arm when adapting to a novel dynamic environment. Exp Brain Res 182:567–577

    Article  PubMed  Google Scholar 

  • Schaefer SY, Haaland KY, Sainburg RL (2007) Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain 130:2146–2158

    Article  PubMed  Google Scholar 

  • Schaefer SY, Haaland KY, Sainburg RL (2009a) Dissociation of initial trajectory and final position errors during visuomotor adaptation following unilateral stroke. Brain Res 1298:78–91

    Article  PubMed  CAS  Google Scholar 

  • Schaefer SY, Haaland KY, Sainburg RL (2009b) Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy. Neuropsychologia 47:2953–2966

    Article  PubMed  Google Scholar 

  • Schneider K, Zernicke RF (1990) A Fortran package for the planar analysis of limb intersegmental dynamics from spatial coordinate-time data. Adv Eng Softw 12:123–128

    Google Scholar 

  • Shabbott BA, Sainburg RL (2009) On-line corrections for visuomotor errors. Exp Brain Res 195:59–72

    Article  PubMed  Google Scholar 

  • Singh LN, Higano S, Takahashi S, Kurihara N, Furuta S, Tamura H, Shimanuki Y, Mugikura S, Fujii T, Yamadori A, Sakamoto M, Yamada S (1998) Comparison of ipsilateral activation between right and left handers: a functional MR imaging study. Neuroreport 9:1861–1866

    Article  PubMed  CAS  Google Scholar 

  • Solodkin A, Hlustik P, Noll DC, Small SL (2001) Lateralization of motor circuits and handedness during finger movements. Eur J Neurol 8:425–434

    Article  PubMed  CAS  Google Scholar 

  • Velay JL, Benoit-Dubrocard S (1999) Hemispheric asymmetry and interhemispheric transfer in reaching programming. Neuropsychologia 37:895–903

    Article  PubMed  CAS  Google Scholar 

  • Verstynen T, Diedrichsen J, Albert N, Aparicio P, Ivry RB (2005) Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. J Neurophysiol 93:1209–1222

    Article  PubMed  Google Scholar 

  • Wang J, Sainburg RL (2006) Interlimb transfer of visuomotor rotations depends on handedness. Exp Brain Res 175:223–230

    Article  PubMed  Google Scholar 

  • Winstein CJ, Pohl PS (1995) Effects of unilateral brain damage on the control of goal-directed hand movements. Exp Brain Res 105:163–174

    Article  PubMed  CAS  Google Scholar 

  • Winter DA (1990) Biomechanics and motor control of human movement. Wiley, New York

    Google Scholar 

  • Yamauchi M, Imanaka K, Nakayama M, Nishizawa S (2004) Lateral difference and interhemispheric transfer on arm-positioning movement between right and left handers. Percept Motor Skills 98:1199–1209

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health, National Institute for Child Health and Human Development (R01HD39311 and R01HD059783).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Sainburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Przybyla, A., Good, D.C. & Sainburg, R.L. Dynamic dominance varies with handedness: reduced interlimb asymmetries in left-handers. Exp Brain Res 216, 419–431 (2012). https://doi.org/10.1007/s00221-011-2946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2946-y

Keywords

Navigation