Advertisement

Experimental Brain Research

, 215:135 | Cite as

Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence

  • Tino ZaehleEmail author
  • Manuela Beretta
  • Lutz Jäncke
  • Christoph S. Herrmann
  • Pascale Sandmann
Research Article

Abstract

Transcranial direct current stimulation (tDCS) can systematically modify behavior by inducing changes in the underlying brain function. Objective electrophysiological evidence for tDCS-induced excitability changes has been demonstrated for the visual and somatosensory cortex, while evidence for excitability changes in the auditory cortex is lacking. In the present study, we applied tDCS over the left temporal as well as the left temporo-parietal cortex and investigated tDCS-induced effects on auditory evoked potentials after anodal, cathodal, and sham stimulation. Results show that anodal and cathodal tDCS can modify auditory cortex reactivity. Moreover, auditory evoked potentials were differentially modulated as a function of site of stimulation. While anodal tDCS over the temporal cortex increased auditory P50 amplitudes, cathodal tDCS over the temporo-parietal cortex induced larger N1 amplitudes. The results directly demonstrate excitability changes in the auditory cortex induced by active tDCS over the temporal and temporo-parietal cortex and might contribute to the understanding of mechanisms involved in the successful treatment of auditory disorders like tinnitus via tDCS.

Keywords

tDCS TES AEP EEG Auditory cortex 

Notes

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (SFB/TR31-TPA9) (TZ, CSH) and the Swiss National Foundation (PBZHP3-128462) (PS).

References

  1. Accornero N, Li Voti P, La Riccia M, Gregori B (2007) Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res 178:261–266PubMedCrossRefGoogle Scholar
  2. Ambrus GG, Zimmer M, Kincses ZT, Harza I, Kovács G, Paulus W, Antal A (2011) The enhancement of cortical excitability over the DLPFC before and during training impairs categorization in the prototype distortion task. Neuropsychologia 49:1974–1980PubMedCrossRefGoogle Scholar
  3. Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321PubMedCrossRefGoogle Scholar
  4. Antal A, Kincses TZ, Nitsche MA, Paulus W (2003) Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Exp Brain Res 150:375–378PubMedGoogle Scholar
  5. Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W (2004) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci 45:702–707PubMedCrossRefGoogle Scholar
  6. Antal A, Brepohl N, Poreisz C, Boros K, Csifcsak G, Paulus W (2008) Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. Clin J Pain 24:56–63PubMedCrossRefGoogle Scholar
  7. Been G, Ngo TT, Miller SM, Fitzgerald PB (2007) The use of tDCS and CVS as methods of non-invasive brain stimulation. Brain Res Rev 56:346–361PubMedCrossRefGoogle Scholar
  8. Bindman LJ, Lippold OC, Redfearn JW (1962) Long-lasting changes in the level of the electrical activity of the cerebral cortex produced bypolarizing currents. Nature 196:584–585PubMedCrossRefGoogle Scholar
  9. Bullard LM, Browning ES, Clark VP, Coffman BA, Garcia CM, Jung RE, van der Merwe AJ, Paulson KM, Vakhtin AA, Wootton CL, Weisend MP (2011) Transcranial direct current stimulation’s effect on novice versus experienced learning. Exp Brain Res 213:9–14PubMedCrossRefGoogle Scholar
  10. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21PubMedCrossRefGoogle Scholar
  11. Delorme A, Sejnowski T, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34:1443–1449PubMedCrossRefGoogle Scholar
  12. Dieckhofer A, Waberski TD, Nitsche M, Paulus W, Buchner H, Gobbele R (2006) Transcranial direct current stimulation applied over the somatosensory cortex—differential effect on low and high frequency SEPs. Clin Neurophysiol 117:2221–2227PubMedCrossRefGoogle Scholar
  13. Fox D (2011) Neuroscience: brain buzz. Nature 472:156–158PubMedCrossRefGoogle Scholar
  14. Fregni F, Marcondes R, Boggio PS, Marcolin MA, Rigonatti SP, Sanchez TG, Nitsche MA, Pascual-Leone A (2006) Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Eur J Neurol 13:996–1001PubMedCrossRefGoogle Scholar
  15. Furubayashi T, Terao Y, Arai N, Okabe S, Mochizuki H, Hanajima R, Hamada M, Yugeta A, Inomata-Terada S, Ugawa Y (2008) Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area. Exp Brain Res 185:279–286PubMedCrossRefGoogle Scholar
  16. Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 117:845–850PubMedCrossRefGoogle Scholar
  17. Garin P, Gilain C, Van Damme JP, de Fays K, Jamart J, Ossemann M, Vandermeeren Y (2011) Short- and long-lasting tinnitus relief induced by transcranial direct current stimulation. J Neurol [Epub ahead of print]Google Scholar
  18. Gartside IB (1968) Mechanisms of sustained increases of firing rate of neurons in the rat cerebral cortex after polarization: reverberating circuits or modification of synaptic conductance? Nature 220:382–383PubMedCrossRefGoogle Scholar
  19. Hattori Y, Moriwaki A, Hori Y (1990) Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neurosci Lett 116:320–324PubMedCrossRefGoogle Scholar
  20. Jasper HH (1958) The ten-twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol 10:371–375Google Scholar
  21. Jeffery DT, Norton JA, Roy FD, Gorassini MA (2007) Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res 182:281–287PubMedCrossRefGoogle Scholar
  22. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ (2000a) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37:163–178PubMedCrossRefGoogle Scholar
  23. Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2000b) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111:1745–1758PubMedCrossRefGoogle Scholar
  24. Kincses TZ, Antal A, Nitsche MA, Bártfai O, Paulus W (2004) Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia 42:113–117PubMedCrossRefGoogle Scholar
  25. Kleinjung T, Langguth B (2009) Strategies for enhancement of transcranial magnetic stimulation effects in tinnitus patients. Int Tinnitus J 15:154–160PubMedGoogle Scholar
  26. Kraft A, Roehmel J, Olma MC, Schmidt S, Irlbacher K, Brandt SA (2010) Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Exp Brain Res 207:283–290PubMedCrossRefGoogle Scholar
  27. Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125:2238–2247PubMedCrossRefGoogle Scholar
  28. Loui P, Hohmann A, Schlaug G (2010) Inducing disorders in pitch perception and production: a reverse-engineering approach. Proc Meet Acoust 9:50002PubMedCrossRefGoogle Scholar
  29. Madhavan S, Weber KA 2nd, Stinear JW (2011) Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: implications for rehabilitation. Exp Brain Res 209:9–17PubMedCrossRefGoogle Scholar
  30. Matsunaga K, Nitsche MA, Tsuji S, Rothwell JC (2004) Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol 115:456–460PubMedCrossRefGoogle Scholar
  31. Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117:1623–1629PubMedCrossRefGoogle Scholar
  32. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(3):633–639PubMedCrossRefGoogle Scholar
  33. Nitsche MA, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W (2003) Modulation of cortical excitability by weak direct current stimulation: technical, safety and functional aspects. Clin Electrophysiol Suppl 56:255–276CrossRefGoogle Scholar
  34. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimulation 1:206–223PubMedCrossRefGoogle Scholar
  35. Purpura DP, McMurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28:166–185PubMedGoogle Scholar
  36. Quian Quiroga R, Garcia H (2003) Single-trial event-related potentials with wavelet denoising. Clin Neurophysiol 114:376–390PubMedCrossRefGoogle Scholar
  37. Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2:215–228PubMedCrossRefGoogle Scholar
  38. Roth BJ (1994) Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng 22:253–305PubMedGoogle Scholar
  39. Tanaka S, Hanakawa T, Honda M, Watanabe K (2009) Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 196:459–465PubMedCrossRefGoogle Scholar
  40. Vines BW, Schnider NM, Schlaug G (2006) Testing for causality with transcranial direct current stimulation: pitch memory and the left supramarginal gyrus. Neuroreport 17:1047–1050PubMedCrossRefGoogle Scholar
  41. Zaehle T, Sandmann P, Thorne JD, Jäncke L, Herrmann CS (2011) Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci 12:2PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tino Zaehle
    • 1
    • 2
    Email author
  • Manuela Beretta
    • 3
  • Lutz Jäncke
    • 3
  • Christoph S. Herrmann
    • 4
  • Pascale Sandmann
    • 5
  1. 1.Department of NeurologyOtto v. Guericke UniversityMagdeburgGermany
  2. 2.German Centre for Neurodegenerative Diseases (DZNE)MagdeburgGermany
  3. 3.Institute of Psychology, Division of NeuropsychologyUniversity of ZurichZurichSwitzerland
  4. 4.Department of Psychology, Experimental Psychology LabCarl von Ossietzky University of OldenburgOldenburgGermany
  5. 5.Department of Psychology, Neuropsychology LabCarl von Ossietzky University of OldenburgOldenburgGermany

Personalised recommendations