Experimental Brain Research

, Volume 217, Issue 3–4, pp 353–364 | Cite as

Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells

  • Silke Brunholz
  • Sangram Sisodia
  • Alfredo Lorenzo
  • Carole Deyts
  • Stefan Kins
  • Gerardo Morfini


Over two decades have passed since the original discovery of amyloid precursor protein (APP). While physiological function(s) of APP still remain a matter of debate, consensus exists that the proteolytic processing of this protein represents a critical event in the life of neurons and that abnormalities in this process are instrumental in Alzheimer’s disease (AD) pathogenesis. Specific molecular components involved in APP proteolysis have been identified, and their enzymatic activities characterized in great detail. As specific proteolytic fragments of APP are identified and novel physiological effects for these fragments are revealed, more obvious becomes our need to understand the spatial organization of APP proteolysis. Valuable insights on this process have been obtained through the study of non-neuronal cells. However, much less is known about the topology of APP processing in neuronal cells, which are characterized by their remarkably complex cellular architecture and extreme degree of polarization. In this review, we discuss published literature addressing various molecular mechanisms and components involved in the trafficking and subcellular distribution of APP and APP secretases in neurons. These include the relevant machinery involved in their sorting, the identity of membranous organelles in which APP is transported, and the molecular motor-based mechanisms involved in their translocation. We also review experimental evidence specifically addressing the processing of APP at the axonal compartment. Understanding neuron-specific mechanisms of APP processing would help illuminating the physiological roles of APP-derived proteolytic fragments and provide novel insights on AD pathogenesis.


Alzheimer’s disease Amyloid precursor protein Secretases Kinesin Axonal transport 


  1. Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I (2009) Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci 12(12):1567–1576. doi:10.1038/nn.2433 PubMedGoogle Scholar
  2. Amaratunga A, Leeman SE, Kosik KS, Fine RE (1995) Inhibition of kinesin synthesis in vivo inhibits the rapid transport of representative proteins for three transport vesicle classes into the axon. J Neurochem 64(5):2374–2376PubMedGoogle Scholar
  3. Back S, Haas P, Tschape JA, Gruebl T, Kirsch J, Muller U, Beyreuther K, Kins S (2007) Beta-amyloid precursor protein can be transported independent of any sorting signal to the axonal and dendritic compartment. J Neurosci Res 85(12):2580–2590. doi:10.1002/jnr.21239 PubMedGoogle Scholar
  4. Balleza-Tapia H, Pena F (2009) Pharmacology of the intracellular pathways activated by amyloid beta protein. Mini Rev Med Chem 9(6):724–740PubMedGoogle Scholar
  5. Baruch-Suchodolsky R, Fischer B (2009) Abeta40, either soluble or aggregated, is a remarkably potent antioxidant in cell-free oxidative systems. Biochemistry 48(20):4354–4370. doi:10.1021/bi802361k PubMedGoogle Scholar
  6. Bloom GS, Wagner MC, Pfister KK, Brady ST (1988) Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide. Biochemistry 27(9):3409–3416PubMedGoogle Scholar
  7. Burack MA, Silverman MA, Banker G (2000) The role of selective transport in neuronal protein sorting. Neuron 26(2):465–472PubMedGoogle Scholar
  8. Burgos PV, Mardones GA, Rojas AL, daSilva LL, Prabhu Y, Hurley JH, Bonifacino JS (2010) Sorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complex. Dev Cell 18(3):425–436. doi:10.1016/j.devcel.2010.01.015 PubMedGoogle Scholar
  9. Busciglio J, Lorenzo A, Yankner BA (1992) Methodological variables in the assessment of beta amyloid neurotoxicity. Neurobiol Aging 13(5):609–612PubMedGoogle Scholar
  10. Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14(4):879–888PubMedGoogle Scholar
  11. Buxbaum JD, Thinakaran G, Koliatsos V, O’Callahan J, Slunt HH, Price DL, Sisodia SS (1998) Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci 18:9629–9637PubMedGoogle Scholar
  12. Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, Muller U, Prochiantz A (2004) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131(9):2173–2181. doi:10.1242/dev.01103 PubMedGoogle Scholar
  13. Capell A, Meyn L, Fluhrer R, Teplow DB, Walter J, Haass C (2002) Apical sorting of beta-secretase limits amyloid beta-peptide production. J Biol Chem 277(7):5637–5643. doi:10.1074/jbc.M109119200 PubMedGoogle Scholar
  14. Chang KA, Suh YH (2010) Possible roles of amyloid intracellular domain of amyloid precursor protein. BMB Rep 43(10):656–663. doi:10.3858/BMBRep.2010.43.10.656 PubMedGoogle Scholar
  15. Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P, Mauger G, Allinquant B (2011) Secreted amyloid precursor protein beta and secreted amyloid precursor protein alpha induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS One 6(1):e16301. doi:10.1371/journal.pone.0016301 PubMedGoogle Scholar
  16. Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM, Bu G, Mennerick S, Holtzman DM (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 58(1):42–51. doi:10.1016/j.neuron.2008.02.003 PubMedGoogle Scholar
  17. Copanaki E, Chang S, Vlachos A, Tschape JA, Muller UC, Kogel D, Deller T (2010) sAPPalpha antagonizes dendritic degeneration and neuron death triggered by proteasomal stress. Mol Cell Neurosci 44(4):386–393. doi:10.1016/j.mcn.2010.04.007 PubMedGoogle Scholar
  18. Cyr JL, Pfister KK, Bloom GS, Slaughter CA, Brady ST (1991) Molecular genetics of kinesin light chains: generation of isoforms by alternative splicing. Proc Nat Acad Sci USA 88:10114–10118PubMedGoogle Scholar
  19. Davis-Salinas J, Saporito-Irwin SM, Cotman CW, Van Nostrand WE (1995) Amyloid beta-protein induces its own production in cultured degenerating cerebrovascular smooth muscle cells. J Neurochem 65(2):931–934PubMedGoogle Scholar
  20. De Strooper B (2003) Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-secretase complex. Neuron 38(1):9–12PubMedGoogle Scholar
  21. DeBoer SR, You Y, Szodorai A, Kaminska A, Pigino G, Nwabuisi E, Wang B, Estrada-Hernandez T, Kins S, Brady ST, Morfini G (2008) Conventional kinesin holoenzymes are composed of heavy and light chain homodimers. Biochemistry 47(15):4535–4543PubMedGoogle Scholar
  22. Derby MC, Gleeson PA (2007) New insights into membrane trafficking and protein sorting. Int Rev Cytol 261:47–116. doi:10.1016/S0074-7696(07)61002-X PubMedGoogle Scholar
  23. Espana J, Gimenez-Llort L, Valero J, Minano A, Rabano A, Rodriguez-Alvarez J, LaFerla FM, Saura CA (2010) Intraneuronal beta-amyloid accumulation in the amygdala enhances fear and anxiety in Alzheimer’s disease transgenic mice. Biol Psychiatry 67(6):513–521. doi:10.1016/j.biopsych.2009.06.015 PubMedGoogle Scholar
  24. Ferreira A, Niclas J, Vale RD, Banker G, Kosik KS (1992) Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides. J Cell Biol 117(3):595–606PubMedGoogle Scholar
  25. Ferreira A, Caceres A, Kosik KS (1993) Intraneuronal compartments of the amyloid precursor protein. J Neurosci 13(7):3112–3123PubMedGoogle Scholar
  26. Goldsbury C, Mocanu MM, Thies E, Kaether C, Haass C, Keller P, Biernat J, Mandelkow E, Mandelkow EM (2006) Inhibition of APP trafficking by tau protein does not increase the generation of amyloid-beta peptides. Traffic 7(7):873–888PubMedGoogle Scholar
  27. Goodger ZV, Rajendran L, Trutzel A, Kohli BM, Nitsch RM, Konietzko U (2009) Nuclear signaling by the APP intracellular domain occurs predominantly through the amyloidogenic processing pathway. J Cell Sci 122(Pt 20):3703–3714. doi:10.1242/jcs.048090 PubMedGoogle Scholar
  28. Grimm MO, Grimm HS, Patzold AJ, Zinser EG, Halonen R, Duering M, Tschape JA, De Strooper B, Muller U, Shen J, Hartmann T (2005) Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat Cell Biol 7(11):1118–1123. doi:10.1038/ncb1313 PubMedGoogle Scholar
  29. Groemer TW, Thiel CS, Holt M, Riedel D, Hua Y, Huve J, Wilhelm BG, Klingauf J (2011) Amyloid precursor protein is trafficked and secreted via synaptic vesicles. PLoS One 6(4):e18754. doi:10.1371/journal.pone.0018754 PubMedGoogle Scholar
  30. Gyoeva FK, Bybikova EM, Minin AA (2000) An isoform of kinesin light chain specific for the Golgi complex. J Cell Sci 113(Pt 11):2047–2054PubMedGoogle Scholar
  31. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB et al (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359(6393):322–325. doi:10.1038/359322a0 PubMedGoogle Scholar
  32. Haass C, Koo EH, Teplow DB, Selkoe DJ (1994) Polarized secretion of beta-amyloid precursor protein and amyloid beta-peptide in MDCK cells. Proc Natl Acad Sci USA 91(4):1564–1568PubMedGoogle Scholar
  33. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMedGoogle Scholar
  34. Heredia L, Helguera P, de Olmos S, Kedikian G, Sola Vigo F, LaFerla F, Staufenbiel M, de Olmos J, Busciglio J, Caceres A, Lorenzo A (2006) Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer’s disease. J Neurosci 26(24):6533–6542. doi:10.1523/JNEUROSCI.5567-05.2006 PubMedGoogle Scholar
  35. Hernandez F, Gomez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J (2010) GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol 223(2):322–325. doi:10.1016/j.expneurol.2009.09.011 PubMedGoogle Scholar
  36. Hoey SE, Williams RJ, Perkinton MS (2009) Synaptic NMDA receptor activation stimulates alpha-secretase amyloid precursor protein processing and inhibits amyloid-beta production. J Neurosci 29(14):4442–4460. doi:10.1523/JNEUROSCI.6017-08.2009 PubMedGoogle Scholar
  37. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52(5):831–843. doi:10.1016/j.neuron.2006.10.035 PubMedGoogle Scholar
  38. Huovila AP, Turner AJ, Pelto-Huikko M, Karkkainen I, Ortiz RM (2005) Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30(7):413–422. doi:10.1016/j.tibs.2005.05.006 PubMedGoogle Scholar
  39. Inomata H, Nakamura Y, Hayakawa A, Takata H, Suzuki T, Miyazawa K, Kitamura N (2003) A scaffold protein JIP-1b enhances amyloid precursor protein phosphorylation by JNK and its association with kinesin light chain 1. J Biol Chem 278(25):22946–22955. doi:10.1074/jbc.M212160200 Google Scholar
  40. Kaether C, Skehel P, Dotti CG (2000) Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol Biol Cell 11(4):1213–1224PubMedGoogle Scholar
  41. Kaether C, Haass C, Steiner H (2006) Assembly, trafficking and function of gamma-secretase. Neurodegener Dis 3(4–5):275–283. doi:10.1159/000095267 PubMedGoogle Scholar
  42. Kamal A, Goldstein LS (2002) Principles of cargo attachment to cytoplasmic motor proteins. Curr Opin Cell Biol 14(1):63–68PubMedGoogle Scholar
  43. Kamal A, Stokin GB, Yang Z, Xia CH, Goldstein LS (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28(2):449–459. doi:S0955067401002952 PubMedGoogle Scholar
  44. Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414(6864):643–648PubMedGoogle Scholar
  45. Kedikian G, Heredia F, Salvador VR, Raimunda D, Isoardi N, Heredia L, Lorenzo A (2010) Secreted amyloid precursor protein and holo-APP bind amyloid beta through distinct domains eliciting different toxic responses on hippocampal neurons. J Neurosci Res 88(8):1795–1803. doi:10.1002/jnr.22347 PubMedGoogle Scholar
  46. Khodjakov A, Lizunova EM, Minin AA, Koonce MP, Gyoeva FK (1998) A specific light chain of kinesin associates with mitochondria in cultured cells. Molec Biol Cell 9:333–343PubMedGoogle Scholar
  47. Kim W, Hecht MH (2005) Sequence determinants of enhanced amyloidogenicity of Alzheimer A{beta}42 peptide relative to A{beta}40. J Biol Chem 280(41):35069–35076. doi:10.1074/jbc.M505763200 PubMedGoogle Scholar
  48. Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem 269(26):17386–17389PubMedGoogle Scholar
  49. Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL, Price DL (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci USA 87(4):1561–1565PubMedGoogle Scholar
  50. Kuentzel SL, Ali SM, Altman RA, Greenberg BD, Raub TJ (1993) The Alzheimer beta-amyloid protein precursor/protease nexin-II is cleaved by secretase in a trans-Golgi secretory compartment in human neuroglioma cells. Biochem J 295(Pt 2):367–378PubMedGoogle Scholar
  51. Kuhn PH, Wang H, Dislich B, Colombo A, Zeitschel U, Ellwart JW, Kremmer E, Rossner S, Lichtenthaler SF (2010) ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J 29(17):3020–3032. doi:10.1038/emboj.2010.167 PubMedGoogle Scholar
  52. Lahiri DK, Maloney B (2010) Beyond the signaling effect role of amyloid-ss42 on the processing of APP, and its clinical implications. Exp Neurol 225(1):51–54. doi:10.1016/j.expneurol.2010.04.018 PubMedGoogle Scholar
  53. Lazarov O, Lee M, Peterson DA, Sisodia SS (2002) Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 22(22):9785–9793PubMedGoogle Scholar
  54. Lazarov O, Morfini GA, Lee EB, Farah MH, Szodorai A, DeBoer SR, Koliatsos VE, Kins S, Lee VM, Wong PC, Price DL, Brady ST, Sisodia SS (2005) Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci 25(9):2386–2395. doi:10.1523/JNEUROSCI.3089-04.2005 PubMedGoogle Scholar
  55. Lee EB, Zhang B, Liu K, Greenbaum EA, Doms RW, Trojanowski JQ, Lee VM (2005) BACE overexpression alters the subcellular processing of APP and inhibits Abeta deposition in vivo. J Cell Biol 168(2):291–302. doi:10.1083/jcb.200407070 PubMedGoogle Scholar
  56. Lorenzen A, Samosh J, Vandewark K, Anborgh PH, Seah C, Magalhaes AC, Cregan SP, Ferguson SS, Pasternak SH (2010) Rapid and direct transport of cell surface APP to the lysosome defines a novel selective pathway. Mol Brain 3:11. doi:10.1186/1756-6606-3-11 PubMedGoogle Scholar
  57. Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci USA 91(25):12243–12247PubMedGoogle Scholar
  58. Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-Pierrat C, Staufenbiel M, Mautino J, Vigo FS, Sommer B, Yankner BA (2000) Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat Neurosci 3(5):460–464. doi:10.1038/74833 PubMedGoogle Scholar
  59. Marsden IT, Minamide LS, Bamburg JR (2011) Amyloid-beta-induced amyloid-beta secretion: a possible feed-forward mechanism in Alzheimer’s disease. J Alzheimers Dis 24(4):681–691. doi:10.3233/JAD-2011-101899 Google Scholar
  60. Matsuda S, Matsuda Y, D’Adamio L (2003) Amyloid beta protein precursor (AbetaPP), but not AbetaPP-like protein 2, is bridged to the kinesin light chain by the scaffold protein JNK-interacting protein 1. J Biol Chem 278(40):38601–38606PubMedGoogle Scholar
  61. Meziane H, Dodart JC, Mathis C, Little S, Clemens J, Paul SM, Ungerer A (1998) Memory-enhancing effects of secreted forms of the beta-amyloid precursor protein in normal and amnestic mice. Proc Natl Acad Sci USA 95(21):12683–12688PubMedGoogle Scholar
  62. Miki H, Setou M, Hirokawa N (2003) Kinesin superfamily proteins (KIFs) in the mouse transcriptome. Genome Res 13(6B):1455–1465PubMedGoogle Scholar
  63. Moreno H, Yu E, Pigino G, Hernandez AI, Kim N, Moreira JE, Sugimori M, Llinas RR (2009) Synaptic transmission block by presynaptic injection of oligomeric amyloid beta. Proc Natl Acad Sci USA 106(14):5901–5906. doi:10.1073/pnas.0900944106 PubMedGoogle Scholar
  64. Morfini G, Szebenyi G, Richards B, Brady ST (2001) Regulation of kinesin: implications for neuronal development. Dev Neurosci 23:364–376PubMedGoogle Scholar
  65. Morfini G, Pigino G, Beffert U, Busciglio J, Brady ST (2002) Fast axonal transport misregulation and Alzheimer’s disease. Neuromolecular Med 2(2):89–99PubMedGoogle Scholar
  66. Morfini GA, Stenoien DL, Brady ST (2006) Axonal transport. In: Siegel G, Albers RW, Brady S, Price D (eds) Basic neurochemistry, 7th edn. Elsevier Academic, Burlington, pp 485–502Google Scholar
  67. Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH Jr, Brown H, Tiwari A, Hayward L, Edgar J, Nave KA, Garberrn J, Atagi Y, Song Y, Pigino G, Brady ST (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29(41):12776–12786. doi:10.1523/JNEUROSCI.3463-09.2009 PubMedGoogle Scholar
  68. Morin PJ, Abraham CR, Amaratunga A, Johnson RJ, Huber G, Sandell JH, Fine RE (1993) Amyloid precursor protein is synthesized by retinal ganglion cells, rapidly transported to the optic nerve plasma membrane and nerve terminals, and metabolized. J Neurochem 61(2):464–473PubMedGoogle Scholar
  69. Muller T, Meyer HE, Egensperger R, Marcus K (2008) The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer’s disease. Prog Neurobiol 85(4):393–406. doi:10.1016/j.pneurobio.2008.05.002 PubMedGoogle Scholar
  70. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103. doi:10.1038/47513 PubMedGoogle Scholar
  71. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232):981–989. doi:10.1038/nature07767 PubMedGoogle Scholar
  72. Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258(5080):304–307PubMedGoogle Scholar
  73. Nitsch RM, Farber SA, Growdon JH, Wurtman RJ (1993) Release of amyloid beta-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc Natl Acad Sci USA 90(11):5191–5193PubMedGoogle Scholar
  74. Oddo S, Caccamo A, Smith IF, Green KN, LaFerla FM (2006) A dynamic relationship between intracellular and extracellular pools of Abeta. Am J Pathol 168(1):184–194PubMedGoogle Scholar
  75. Pigino G, Morfini G, Brady ST (2006) Intracellular trafficking. In: Siegel G, Albers RW, Brady S, Price D (eds) Basic neurochemistry, 7th edn. Elsevier Academic, Burlington, pp 139–164Google Scholar
  76. Pigino G, Morfini G, Atagi Y, Deshpande A, Yu C, Jungbauer L, LaDu M, Busciglio J, Brady S (2009) Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci USA 106(14):5907–5912. doi:10.1073/pnas.0901229106 PubMedGoogle Scholar
  77. Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28(53):14537–14545. doi:10.1523/JNEUROSCI.2692-08.2008 PubMedGoogle Scholar
  78. Randall AD, Witton J, Booth C, Hynes-Allen A, Brown JT (2010) The functional neurophysiology of the amyloid precursor protein (APP) processing pathway. Neuropharmacology 59(4–5):243–267. doi:10.1016/j.neuropharm.2010.02.011 PubMedGoogle Scholar
  79. Roy S, Zhang B, Lee VM, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol (Berl) 109(1):5–13Google Scholar
  80. Rusu P, Jansen A, Soba P, Kirsch J, Lower A, Merdes G, Kuan YH, Jung A, Beyreuther K, Kjaerulff O, Kins S (2007) Axonal accumulation of synaptic markers in APP transgenic Drosophila depends on the NPTY motif and is paralleled by defects in synaptic plasticity. Eur J Neurosci 25(4):1079–1086. doi:10.1111/j.1460-9568.2007.05341.x PubMedGoogle Scholar
  81. Saito T, Suemoto T, Brouwers N, Sleegers K, Funamoto S, Mihira N, Matsuba Y, Yamada K, Nilsson P, Takano J, Nishimura M, Iwata N, Van Broeckhoven C, Ihara Y, Saido TC (2011) Potent amyloidogenicity and pathogenicity of Abeta43. Nat Neurosci. doi:10.1038/nn.2858
  82. Satpute-Krishnan P, DeGiorgis JA, Conley MP, Jang M, Bearer EL (2006) A peptide zipcode sufficient for anterograde transport within amyloid precursor protein. Proc Natl Acad Sci USA 103(44):16532–16537. doi:10.1073/pnas.0607527103 PubMedGoogle Scholar
  83. Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66:511–548PubMedGoogle Scholar
  84. Schubert W, Prior R, Weidemann A, Dircksen H, Multhaup G, Masters CL, Beyreuther K (1991) Localization of Alzheimer beta A4 amyloid precursor protein at central and peripheral synaptic sites. Brain Res 563(1–2):184–194PubMedGoogle Scholar
  85. Shankar GM, Walsh DM (2009) Alzheimer’s disease: synaptic dysfunction and Abeta. Mol Neurodegener 4:48. doi:10.1186/1750-1326-4-48 PubMedGoogle Scholar
  86. Silverman MA, Peck R, Glover G, He C, Carlin C, Banker G (2005) Motifs that mediate dendritic targeting in hippocampal neurons: a comparison with basolateral targeting signals. Mol Cell Neurosci 29(2):173–180. doi:10.1016/j.mcn.2005.02.008 PubMedGoogle Scholar
  87. Simons M, Ikonen E, Tienari PJ, Cid-Arregui A, Monning U, Beyreuther K, Dotti CG (1995) Intracellular routing of human amyloid protein precursor: axonal delivery followed by transport to the dendrites. J Neurosci Res 41(1):121–128. doi:10.1002/jnr.490410114 PubMedGoogle Scholar
  88. Simons M, de Strooper B, Multhaup G, Tienari PJ, Dotti CG, Beyreuther K (1996) Amyloidogenic processing of the human amyloid precursor protein in primary cultures of rat hippocampal neurons. J Neurosci 16(3):899–908PubMedGoogle Scholar
  89. Sisodia SS (1992) Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 89(13):6075–6079PubMedGoogle Scholar
  90. Sisodia SS, Koo EH, Beyreuther K, Unterbeck A, Price DL (1990) Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248(4954):492–495PubMedGoogle Scholar
  91. Sola Vigo F, Kedikian G, Heredia L, Heredia F, Anel AD, Rosa AL, Lorenzo A (2009) Amyloid-beta precursor protein mediates neuronal toxicity of amyloid beta through Go protein activation. Neurobiol Aging 30(9):1379–1392. doi:10.1016/j.neurobiolaging.2007.11.017 PubMedGoogle Scholar
  92. Stenoien DS, Brady ST (1997) Immunochemical analysis of kinesin light chain function. Molec Biol Cell 8:675–689PubMedGoogle Scholar
  93. Szodorai A, Kuan YH, Hunzelmann S, Engel U, Sakane A, Sasaki T, Takai Y, Kirsch J, Muller U, Beyreuther K, Brady S, Morfini G, Kins S (2009) APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J Neurosci 29(46):14534–14544. doi:10.1523/JNEUROSCI.1546-09.2009 PubMedGoogle Scholar
  94. Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, Ihara Y (2009) Gamma-secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci 29(41):13042–13052. doi:10.1523/JNEUROSCI.2362-09.2009 PubMedGoogle Scholar
  95. Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422(6930):438–441. doi:10.1038/nature01506 PubMedGoogle Scholar
  96. Tampellini D, Gouras GK (2010) Synapses, synaptic activity and intraneuronal abeta in Alzheimer’s disease. Front Aging Neurosci 2. doi:10.3389/fnagi.2010.00013
  97. Tang BL (2009) Neuronal protein trafficking associated with Alzheimer disease: from APP and BACE1 to glutamate receptors. Cell Adh Migr 3(1):118–128PubMedGoogle Scholar
  98. Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283(44):29615–29619. doi:10.1074/jbc.R800019200 PubMedGoogle Scholar
  99. Thornton E, Vink R, Blumbergs PC, Van Den Heuvel C (2006) Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain Res 1094(1):38–46. doi:10.1016/j.brainres.2006.03.107 PubMedGoogle Scholar
  100. Tienari PJ, De Strooper B, Ikonen E, Simons M, Weidemann A, Czech C, Hartmann T, Ida N, Multhaup G, Masters CL, Van Leuven F, Beyreuther K, Dotti CG (1996) The beta-amyloid domain is essential for axonal sorting of amyloid precursor protein. EMBO J 15(19):5218–5229PubMedGoogle Scholar
  101. Tsai M-Y, Morfini G, Szebenyi G, Brady ST (2000) Modulation of kinesin-vesicle interactions by Hsc70: implications for regulation of fast axonal transport. Molec Biol Cell 11:2161–2173PubMedGoogle Scholar
  102. Uryu K, Chen XH, Martinez D, Browne KD, Johnson VE, Graham DI, Lee VM, Trojanowski JQ, Smith DH (2007) Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol 208(2):185–192. doi:10.1016/j.expneurol.2007.06.018 PubMedGoogle Scholar
  103. Vallee RB (1993) Molecular analysis of the microtubule motor dynein. Proc Nat Acad Sci USA 90:8769–8772PubMedGoogle Scholar
  104. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741PubMedGoogle Scholar
  105. Vassar R, Kovacs DM, Yan R, Wong PC (2009) The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J Neurosci 29(41):12787–12794. doi:10.1523/JNEUROSCI.3657-09.2009 PubMedGoogle Scholar
  106. Vickers JC, King AE, Woodhouse A, Kirkcaldie MT, Staal JA, McCormack GH, Blizzard CA, Musgrove RE, Mitew S, Liu Y, Chuckowree JA, Bibari O, Dickson TC (2009) Axonopathy and cytoskeletal disruption in degenerative diseases of the central nervous system. Brain Res Bull 80(4–5):217–223. doi:10.1016/j.brainresbull.2009.08.004 PubMedGoogle Scholar
  107. Wang Z, Yang L, Zheng H (2011) Role of APP and Aβ in synaptic physiology. Curr Alzheimer Res [Epub ahead of print]Google Scholar
  108. Wei W, Nguyen LN, Kessels HW, Hagiwara H, Sisodia S, Malinow R (2010) Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat Neurosci 13(2):190–196. doi:10.1038/nn.2476 PubMedGoogle Scholar
  109. Wu G, Sankaranarayanan S, Hsieh SH, Simon AJ, Savage MJ (2011) Decrease in brain soluble amyloid precursor protein beta (sAPPbeta) in Alzheimer’s disease cortex. J Neurosci Res 89(6):822–832. doi:10.1002/jnr.22618 PubMedGoogle Scholar
  110. Yamazaki T, Selkoe DJ, Koo EH (1995) Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons. J Cell Biol 129(2):431–442PubMedGoogle Scholar
  111. Zhang YW, Thompson R, Zhang H, Xu H (2011) APP processing in Alzheimer’s disease. Mol Brain 4:3. doi:10.1186/1756-6606-4-3 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Silke Brunholz
    • 1
  • Sangram Sisodia
    • 2
  • Alfredo Lorenzo
    • 3
  • Carole Deyts
    • 4
  • Stefan Kins
    • 1
  • Gerardo Morfini
    • 5
  1. 1.Department of Human Biology and Human GeneticsTechnical University of KaiserslauternKaiserslauternGermany
  2. 2.Department of Neurobiology, Pharmacology and Physiology, Center for Molecular NeurobiologyThe University of ChicagoChicagoUSA
  3. 3.Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET) y Departamento de Farmacología, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCordobaArgentina
  4. 4.Department of NeurobiologyUniversity of ChicagoChicagoUSA
  5. 5.Department of Anatomy and Cell Biology MC512University of Illinois at ChicagoChicagoUSA

Personalised recommendations