Experimental Brain Research

, 215:13 | Cite as

Trans-saccadic processing of visual and motor planning during sequential eye movements

  • Supriya Ray
  • Neha Bhutani
  • Vishal Kapoor
  • Aditya Murthy
Research Article


How the brain maintains perceptual continuity across eye movements that yield discontinuous snapshots of the world is still poorly understood. In this study, we adapted a framework from the dual-task paradigm, well suited to reveal bottlenecks in mental processing, to study how information is processed across sequential saccades. The pattern of RTs allowed us to distinguish among three forms of trans-saccadic processing (no trans-saccadic processing, trans-saccadic visual processing and trans-saccadic visual processing and saccade planning models). Using a cued double-step saccade task, we show that even though saccade execution is a processing bottleneck, limiting access to incoming visual information, partial visual and motor processing that occur prior to saccade execution is used to guide the next eye movement. These results provide insights into how the oculomotor system is designed to process information across multiple fixations that occur during natural scanning.


Concurrent processing Eye movements Attention Saccadic suppression 



This work was supported by grants from the Department of Science & Technology and the Department of Biotechnology, Govt. of India. S. Ray was supported by Council of Scientific and Industrial Research, India. We thank Dr. A. Sripati, Dr. S.J. Heinen and A. Ramakrishnan for their critical comments on the manuscript.


  1. Becker W (1993) in Contemporary ocular motor and vestibular research: a tribute to David A Robinson. Thieme, Stuttgart, pp 496–503Google Scholar
  2. Becker W, Jürgens R (1979) An analysis of the saccadic system by means of double step stimuli. Vis Res 19:967–983PubMedCrossRefGoogle Scholar
  3. Beeler JR, George W (1967) Visual threshold changes resulting from spontaneous saccadic eye movements. Vis Res 7:769–775PubMedCrossRefGoogle Scholar
  4. Berman RA, Heiser LM, Dunn CA, Saunders RC, Colby CL (2007) Dynamic circuitry for updating spatial representations III. From neurons to behavior. J Neurophysiol 98:105–121PubMedCrossRefGoogle Scholar
  5. Bichot NP, Chenchal Rao S, Schall JD (2001) Continuous processing in monkey frontal cortexduring visual search. Neuropsychologia 39:972–982PubMedCrossRefGoogle Scholar
  6. Bisley JW, Krishna BS, Goldberg ME (2004) A rapid and precise on-response in posterior parietal cortex. J Neurosci 24:1833–1838PubMedCrossRefGoogle Scholar
  7. Bompas A, Sumner P (2009) Temporal dynamics of saccadic distraction. J Vis 9(9):17.1–17.14. doi: 10.1167/9.9.17 Google Scholar
  8. Bonnet C, Dresp B (2001) RT studies of sensory magnitude and perceptual processing. Psychologica 28:63–86Google Scholar
  9. Brooks BA, Fuchs AF (1975) Influence of stimulus parameters on visual sensitivity during saccadic eye movement. Vis Res 15:1389–1398PubMedCrossRefGoogle Scholar
  10. Burr D, Ross J (1982) Contrast sensitivity at high velocities. Vis Res 22:479–484PubMedCrossRefGoogle Scholar
  11. Burr DC, Morrone MC, Ross J (1994) Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371:511–513PubMedCrossRefGoogle Scholar
  12. Burr DC, Morrone MC, Ross J (2001) Separate visual representations for perception and action revealed by saccadic eye movements. Curr Biol 11:798–802PubMedCrossRefGoogle Scholar
  13. Campbell FW, Wurtz RH (1978) Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vis Res 18:1297–1303PubMedCrossRefGoogle Scholar
  14. Caspi A, Beutter BR, Eckstein MP (2004) The time course of visual information accrual guiding eye movement decisions. PNAS 101:13086–13090PubMedCrossRefGoogle Scholar
  15. Castet E, JeanJean S, Masson GS (2002) Motion perception of saccade-induced retinal translation. PNAS 99:15159–15163PubMedCrossRefGoogle Scholar
  16. d’Avossa G, Tosetti M, Crespi S, Biagi L, Burr DC, Morrone MC (2007) Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat Neurosci 10:249–255PubMedCrossRefGoogle Scholar
  17. Deubel H, Schneider W (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36:1827–1837PubMedCrossRefGoogle Scholar
  18. Diamond MR, Ross J, Morrone MC (2000) Extraretinal control of saccadic suppression. J Neurosci 20:3449–3455PubMedGoogle Scholar
  19. Duffy FH, Lombroso CT (1968) Electrophysiological evidence for visual suppression prior to the onset of a voluntary saccadic eye movement. Nature 218:1074–1075PubMedCrossRefGoogle Scholar
  20. Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92PubMedCrossRefGoogle Scholar
  21. Duhamel JR, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–848PubMedCrossRefGoogle Scholar
  22. Eggert T, Ditterich J, Straube A (1999) Intrasaccadic target steps during the deceleration of primary saccades affect the RT of corrective saccades. Exp Brain Res 129:161–166PubMedCrossRefGoogle Scholar
  23. Galletti C, Battaglini PP, Fattori P (1993) Parietal neurons encoding spatial locations in craniotopic coordinates. Exp Brain Res 96:221–229PubMedCrossRefGoogle Scholar
  24. García-Pérez MA, Peli E (2001) Luminance artifacts for cathode-ray tube displays for vision research. Spatial Vis 14:201–215CrossRefGoogle Scholar
  25. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMedCrossRefGoogle Scholar
  26. Hallett PE, Lightstone AD (1976) Saccadic eye movements to flashed target. Vis Res 16:107–114PubMedCrossRefGoogle Scholar
  27. Hanks TD, Ditterich J, Shadlen MN (2006) Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat Neurosci 9:682–689PubMedCrossRefGoogle Scholar
  28. Hayhoe MM, Lachter J, Moeller P (1992) In: Rayner K (ed) Eye movements and visual cognition: scene perception and reading. Springer, New York, pp 130–145Google Scholar
  29. Herrmann K, Montaser-Kouhsari L, Carrasco M, Heeger DJ (2010) When size matters: attention affects performance by contrast or response gain. Nat Neurosci 13:1554–1559PubMedCrossRefGoogle Scholar
  30. Hoffman JE, Subramaniam B (1995) The role of visual attention in saccadic eye movements. Percept Psychophys 57:787–795PubMedCrossRefGoogle Scholar
  31. Holt EB (1903) Eye movements and central anesthesia. Psychol Rev 4:3–45Google Scholar
  32. Honda H (1989) Perceptual localization of visual stimuli flashed during saccades. Percept Psychophys 45:162–174PubMedCrossRefGoogle Scholar
  33. Honda H (2005) The remote distractor effect of saccade latencies in fixation-offset and overlap conditions. Vis Res 45(21):2773–2779PubMedCrossRefGoogle Scholar
  34. Irwin DE (1991) Information integration across saccadic eye movements. Cogn Psychol 23:420–456PubMedCrossRefGoogle Scholar
  35. Irwin DE, Zacks JL, Brown JS (1990) Visual memory and the perception of a stable visual environment. Percept Psychophys 47:35–46PubMedCrossRefGoogle Scholar
  36. Jonides J, Irwin DE, Yantis S (1982) Integrating visual information from successive fixations. Science 215:192–194PubMedCrossRefGoogle Scholar
  37. Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vis Res 35:1897–1916PubMedCrossRefGoogle Scholar
  38. Ludwig CJ, Gilchrist ID, McSorley E (2005) The remote distractor effect in saccade programming: channel interactions and lateral inhibition. Vis Res 45(9):1177–1190PubMedCrossRefGoogle Scholar
  39. Lünenburger L, Lindner W, Hoffmann KP (2003) Neural activity in the primate superior colliculus and saccadic RTs in double-step experiments. Prog Brain Res 142:91–107PubMedCrossRefGoogle Scholar
  40. Mackay DM (1970) Mislocation of test flashes during saccadic image displacements. Nature 227:731–733Google Scholar
  41. Matin E (1974) Saccadic suppression: a review and analysis. Psychol Bull 81:899–917PubMedCrossRefGoogle Scholar
  42. McClelland JL (1979) On the time relations of mental processes: an examination of systems of processes in cascade. Psychol Rev 86:287–330CrossRefGoogle Scholar
  43. McPeek RM, Skavenski AA, Nakayama K (2000) Concurrent processing of saccades in visual search. Vis Res 40:2499–2516PubMedCrossRefGoogle Scholar
  44. Melcher D, Colby CL (2008) Trans-saccadic perception. Trends Cogn Sci 12:466–473PubMedCrossRefGoogle Scholar
  45. Meyer DE, Osman AM, Irwin DE, Yantis S (1988) Modern mental chronometry. Biol Psychol 26:3–67PubMedCrossRefGoogle Scholar
  46. Murthy A, Ray S, Shorter SM, Priddy EG, Schall JD, Thompson KG (2007) Frontal eye field contributions to rapid corrective saccades. J Neurophysiol 97:1457–1469PubMedCrossRefGoogle Scholar
  47. O’Regan JK, Noe A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24:939–973PubMedCrossRefGoogle Scholar
  48. Palmer J, Huk AC, Shadlen MN (2005) The effect of stimulus strength on the speed and accuracy of a perceptual decision. J Vis 5:376–404PubMedCrossRefGoogle Scholar
  49. Pashler H (1984) Processing stages in overlapping tasks: evidence for a central bottleneck. J Exp Psychol Hum Percept Perform 10:358–377PubMedCrossRefGoogle Scholar
  50. Phillips AN, Segraves MA (2010) Predictive activity in macaque frontal eye field neurons during natural scene searching. J Neurophysiol 103:1238–1252PubMedCrossRefGoogle Scholar
  51. Pollatsek A, Rayner K, Henderson JM (1990) Role of spatial location in integration of pictorial information across saccades. J Exp Psychol Hum Percept Perform 16:199–210PubMedCrossRefGoogle Scholar
  52. Prablanc C, Masse D, Echallier JF (1978) Error-correcting mechanisms in large saccades. Vis Res 18:557–560PubMedCrossRefGoogle Scholar
  53. Prime SL, Tsotsos L, Keith GP, Crawford JD (2007) Visual memory capacity in transsaccadic integration. Exp Brain Res 180:609–628PubMedCrossRefGoogle Scholar
  54. Ray S, Schall JD, Murthy A (2004) Programming of double-step saccade sequences: modulation by cognitive control. Vis Res 44:2707–2718PubMedCrossRefGoogle Scholar
  55. Rensink RA (2000) Seeing sensing, scrutinizing. Vis Res 40:1469–1487PubMedCrossRefGoogle Scholar
  56. Riggs LA, Merton PA, Morton HB (1974) Suppression of visual phosphenes during saccadic eye movements. Vis Res 14:997–1011PubMedCrossRefGoogle Scholar
  57. Ross J, Morrone MC, Goldberg ME, Burr DC (2001) Changes in visual perception at the time of saccades. Trends Neurosci 24:113–121PubMedCrossRefGoogle Scholar
  58. Schlag J, Schlag-Rey M (1995) Illusory localization of stimuli flashed in the dark before saccades. Vis Res 35:2347–2357PubMedCrossRefGoogle Scholar
  59. Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD, Leventhal AG (1998) Signal timing across the macaque visual system. J Neurophysiol 79:3272–3278PubMedGoogle Scholar
  60. Sharika KM, Ramakrishnan A, Murthy A (2008) Control of predictive error correction during a saccadic double-step task. J Neurophysiol 100:2757–2770PubMedCrossRefGoogle Scholar
  61. Sigman M, Dehaene S (2005) Parsing a cognitive task: a characterization of the mind’s bottleneck. PLoS Biol 3:e37PubMedCrossRefGoogle Scholar
  62. Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple decisions. Trends Neurosci 27:161–168PubMedCrossRefGoogle Scholar
  63. Sperling G (1990) Comparion of perception in the moving and stationary eye. In: Kowler E (ed) Eye movements their role in visual, cognitive processes. Elsevier, Amsterdam, pp 307–351Google Scholar
  64. Thilo KV, Santoro L, Walsh V, Blakemore C (2004) The site of saccadic suppression. Nat Neurosci 7:13–14PubMedCrossRefGoogle Scholar
  65. Trevarthen CB (1968) Two mechanisms of vision in primates. Psychol Forsch 31:299–348PubMedCrossRefGoogle Scholar
  66. Vaziri S, Diedrichsen J, Shadmehr R (2006) Why does the brain predict sensory consequences of oculomotor commands? Optimal integration of the predicted and the actual sensory feedback. J Neurosci 26:4188–4197PubMedCrossRefGoogle Scholar
  67. Volkmann FC (1986) Human visual suppression. Vis Res 26:1401–1416PubMedCrossRefGoogle Scholar
  68. Walker R, Deubel H, Schneider WX, Findlay JM (1997) Effect of remote distractors on saccade programming: evidence for an extended fixation zone. J Neurophysiol 78:1108–1119PubMedGoogle Scholar
  69. Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–968PubMedCrossRefGoogle Scholar
  70. Welford AT (1952) The ‘psychological refractory period’ and the timing of high-speed performance: a review and a theory. Br J Psychol 43:2–19Google Scholar
  71. White BJ, Gegenfurtner KR, Kerzel D (2005) Effects of structured nontarget stimuli on saccadic latency. J Neurophysiol 93(6):3214–3223PubMedCrossRefGoogle Scholar
  72. Zuber BL, Stark L (1966) Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. Exp Neurol 16:65–79PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Supriya Ray
    • 1
    • 2
  • Neha Bhutani
    • 1
  • Vishal Kapoor
    • 1
    • 3
  • Aditya Murthy
    • 1
    • 4
  1. 1.National Brain Research CentreManesarIndia
  2. 2.The Smith-Kettlewell Eye Research InstituteSan FransiscoUSA
  3. 3.Max Plank Institute for Biological CyberneticsTübingenGermany
  4. 4.Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia

Personalised recommendations