Experimental Brain Research

, Volume 217, Issue 3–4, pp 423–434 | Cite as

Functions of the APP gene family in the nervous system: insights from mouse models

  • Dorothee Aydin
  • Sascha W. Weyer
  • Ulrike C. Müller


The amyloid precursor protein (APP) plays a key role in the pathogenesis of Alzheimer’s disease (AD), as proteolytical cleavage of APP gives rise to the β-amyloid peptide which is deposited in the brains of Alzheimer patients. During the past years, intense research efforts have been directed at elucidating the physiological function(s) of APP and the question of whether a perturbation of these functions contributes to AD pathogenesis. Indeed, a growing body of evidence has accumulated supporting a role of APP and the two closely related homologues APLP1 and APLP2 in various aspects of nervous system development and function, in particular, for synapse formation and function. This review summarizes recent insights into the in vivo role of the APP gene family from mice lacking individual or combinations of APP family members, with particular emphasis on recently generated knockin mice to examine the in vivo relevance of distinct functional domains.


Alzheimer’s disease Amyloid precursor protein Transgenic mouse Knockout mouse Synaptogenesis Neurotransmission Synaptic plasticity Learning 



This work was supported by grants from DFG (SFB 488/D18, MU1457/8-1 and MU1457/9-1 to UM), BMBF (01GS08128 to UM) and the Breuer Stiftung (to UM).

Supplementary material

221_2011_2861_MOESM1_ESM.pdf (266 kb)
Supplementary material 1 (PDF 266 kb)


  1. Anliker B, Müller U (2006) The functions of mammalian amyloid precursor protein and related amyloid precursor-like proteins. Neurodegener Dis 3(4–5):239–246. doi: 10.1159/000095262 PubMedCrossRefGoogle Scholar
  2. Ashley J, Packard M, Ataman B, Budnik V (2005) Fasciclin II signals new synapse formation through amyloid precursor protein and the scaffolding protein dX11/Mint. J Neurosci 25(25):5943–5955. doi: 10.1523/JNEUROSCI.1144-05.2005 PubMedCrossRefGoogle Scholar
  3. Aydin D, Filippov MA, Tschäpe JA, Gretz N, Prinz M, Eils R, Brors B, Müller UC (2011) Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex. BMC Genomics 12:160. doi: 10.1186/1471-2164-12-160 PubMedCrossRefGoogle Scholar
  4. Back S, Haas P, Tschäpe JA, Gruebl T, Kirsch J, Müller U, Beyreuther K, Kins S (2007) Beta-amyloid precursor protein can be transported independent of any sorting signal to the axonal and dendritic compartment. J Neurosci Res 85(12):2580–2590. doi: 10.1002/jnr.21239 PubMedCrossRefGoogle Scholar
  5. Barbagallo AP, Weldon R, Tamayev R, Zhou D, Giliberto L, Foreman O, D’Adamio L (2010) Tyr(682) in the intracellular domain of APP regulates amyloidogenic APP processing in vivo. PLoS One 5(11):e15503. doi: 10.1371/journal.pone.0015503 PubMedCrossRefGoogle Scholar
  6. Barbagallo AP, Wang Z, Zheng H, D’Adamio L (2011) A single tyrosine residue in the amyloid precursor protein intracellular domain is essential for developmental function. J Biol Chem 286(11):8717–8721. doi: 10.1074/jbc.C111.219873 PubMedCrossRefGoogle Scholar
  7. Bell KF, Zheng L, Fahrenholz F, Cuello AC (2008) ADAM-10 over-expression increases cortical synaptogenesis. Neurobiol Aging 29(4):554–565. doi: 10.1016/j.neurobiolaging.2006.11.004 PubMedCrossRefGoogle Scholar
  8. Bergmans BA, Shariati SA, Habets RL, Verstreken P, Schoonjans L, Müller U, Dotti CG, De Strooper B (2010) Neurons generated from APP/APLP1/APLP2 triple knockout embryonic stem cells behave normally in vitro and in vivo: lack of evidence for a cell autonomous role of the amyloid precursor protein in neuronal differentiation. Stem Cells 28(3):399–406. doi: 10.1002/stem.296 PubMedGoogle Scholar
  9. Biederer T, Stagi M (2008) Signaling by synaptogenic molecules. Curr Opin Neurobiol 18(3):261–269. doi: 10.1016/j.conb.2008.07.014 PubMedCrossRefGoogle Scholar
  10. Bittner T, Fuhrmann M, Burgold S, Jung CK, Volbracht C, Steiner H, Mitteregger G, Kretzschmar HA, Haass C, Herms J (2009) Gamma-secretase inhibition reduces spine density in vivo via an amyloid precursor protein-dependent pathway. J Neurosci 29(33):10405–10409. doi: 10.1523/JNEUROSCI.2288-09.2009 PubMedCrossRefGoogle Scholar
  11. Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, Müller U, Prochiantz A (2004) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131(9):2173–2181PubMedCrossRefGoogle Scholar
  12. Colciaghi F, Borroni B, Pastorino L, Marcello E, Zimmermann M, Cattabeni F, Padovani A, Di Luca M (2002) [alpha]-Secretase ADAM10 as well as [alpha]APPs is reduced in platelets and CSF of Alzheimer disease patients. Mol Med 8(2):67–74. doi: S1528365802200671 PubMedGoogle Scholar
  13. Collin RW, van Strien D, Leunissen JA, Martens GJ (2004) Identification and expression of the first nonmammalian amyloid-beta precursor-like protein APLP2 in the amphibian Xenopus laevis. Eur J Biochem 271(10):1906–1912. doi: 10.1111/j.1432-1033.2004.04100.xEJB4100 PubMedCrossRefGoogle Scholar
  14. Dawson GR, Seabrook GR, Zheng H, Smith DW, Graham S, O’Dowd G, Bowery BJ, Boyce S, Trumbauer ME, Chen HY, Van der Ploeg LH, Sirinathsinghji DJ (1999) Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience 90(1):1–13. doi: S0306-4522(98)00410-2 PubMedCrossRefGoogle Scholar
  15. Endres K, Postina R, Schroeder A, Müller U, Fahrenholz F (2005) Shedding of the amyloid precursor protein-like protein APLP2 by disintegrin-metalloproteinases. FEBS J 272(22):5808–5820PubMedCrossRefGoogle Scholar
  16. Furukawa K, Barger SW, Blalock EM, Mattson MP (1996) Activation of K + channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature 379(6560):74–78. doi: 10.1038/379074a0 PubMedCrossRefGoogle Scholar
  17. Gakhar-Koppole N, Hundeshagen P, Mandl C, Weyer SW, Allinquant B, Müller U, Ciccolini F (2008) Activity requires soluble amyloid precursor protein alpha to promote neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway. Eur J Neurosci 28(5):871–882. doi: 10.1111/j.1460-9568.2008.06398.x PubMedCrossRefGoogle Scholar
  18. Giliberto L, Zhou D, Weldon R, Tamagno E, De Luca P, Tabaton M, D’Adamio L (2008) Evidence that the Amyloid beta Precursor Protein-intracellular domain lowers the stress threshold of neurons and has a “regulated” transcriptional role. Mol Neurodegener 3:12. doi: 10.1186/1750-1326-3-12 PubMedCrossRefGoogle Scholar
  19. Grimm MO, Grimm HS, Patzold AJ, Zinser EG, Halonen R, Duering M, Tschäpe JA, De Strooper B, Müller U, Shen J, Hartmann T (2005) Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat Cell Biol 7(11):1118–1123PubMedCrossRefGoogle Scholar
  20. Groemer TW, Thiel CS, Holt M, Riedel D, Hua Y, Huve J, Wilhelm BG, Klingauf J (2011) Amyloid precursor protein is trafficked and secreted via synaptic vesicles. PLoS One 6(4):e18754. doi: 10.1371/journal.pone.0018754 PubMedCrossRefGoogle Scholar
  21. Guenette S, Chang Y, Hiesberger T, Richardson J, Herz J (2003) Mice deficient for the Fe65 and Fe65L1 proteins have neurological defects. Soc Neurosci [Abstract No 33610]Google Scholar
  22. Heber S, Herms J, Gajic V, Hainfellner J, Aguzzi A, Rulicke T, von Kretzschmar H, von Koch C, Sisodia S, Tremml P, Lipp HP, Wolfer DP, Müller U (2000) Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J Neurosci 20(21):7951–7963PubMedGoogle Scholar
  23. Hebert SS, Serneels L, Tolia A, Craessaerts K, Derks C, Filippov MA, Müller U, De Strooper B (2006) Regulated intramembrane proteolysis of amyloid precursor protein and regulation of expression of putative target genes. EMBO Rep 7(7):739–745. doi: 10.1038/sj.embor.7400704 PubMedCrossRefGoogle Scholar
  24. Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, Kretzschmar H, Sisodia S, Müller U (2004) Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. EMBO J 23(20):4106–4115PubMedCrossRefGoogle Scholar
  25. Ho A, Morishita W, Hammer RE, Malenka RC, Sudhof TC (2003) A role for Mints in transmitter release: Mint 1 knockout mice exhibit impaired GABAergic synaptic transmission. Proc Natl Acad Sci USA 100(3):1409–1414. doi: 10.1073/pnas.252774899 PubMedCrossRefGoogle Scholar
  26. Hornsten A, Lieberthal J, Fadia S, Malins R, Ha L, Xu X, Daigle I, Markowitz M, O’Connor G, Plasterk R, Li C (2007) APL-1, a Caenorhabditis elegans protein related to the human beta-amyloid precursor protein, is essential for viability. Proc Natl Acad Sci USA 104(6):1971–1976. doi: 10.1073/pnas.0603997104 PubMedCrossRefGoogle Scholar
  27. Lee KJ, Moussa CE, Lee Y, Sung Y, Howell BW, Turner RS, Pak DT, Hoe HS (2010) Beta amyloid-independent role of amyloid precursor protein in generation and maintenance of dendritic spines. Neuroscience 169(1):344–356. doi: 10.1016/j.neuroscience.2010.04.078 PubMedCrossRefGoogle Scholar
  28. Li ZW, Stark G, Gotz J, Rulicke T, Gschwind M, Huber G, Müller U, Weissmann C (1996) Generation of mice with a 200-kb amyloid precursor protein gene deletion by Cre recombinase-mediated site-specific recombination in embryonic stem cells. Proc Natl Acad Sci USA 93(12):6158–6162PubMedCrossRefGoogle Scholar
  29. Li H, Wang B, Wang Z, Guo Q, Tabuchi K, Hammer RE, Sudhof TC, Zheng H (2010a) Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP. Proc Natl Acad Sci USA 107(40):17362–17367. doi: 10.1073/pnas.1012568107 PubMedCrossRefGoogle Scholar
  30. Li H, Wang Z, Wang B, Guo Q, Dolios G, Tabuchi K, Hammer RE, Sudhof TC, Wang R, Zheng H (2010b) Genetic dissection of the amyloid precursor protein in developmental function and amyloid pathogenesis. J Biol Chem 285(40):30598–30605. doi: 10.1074/jbc.M110.137729 PubMedCrossRefGoogle Scholar
  31. Lichtenthaler SF, Haass C, Steiner H (2011) Regulated intramembrane proteolysis—lessons from amyloid precursor protein processing. J Neurochem 117(5):779–796. doi: 10.1111/j.1471-4159.2011.07248.x PubMedCrossRefGoogle Scholar
  32. Lorent K, Overbergh L, Moechars D, De Strooper B, Van Leuven F, Van den Berghe H (1995) Expression in mouse embryos and in adult mouse brain of three members of the amyloid precursor protein family, of the alpha-2-macroglobulin receptor/low density lipoprotein receptor-related protein and of its ligands apolipoprotein E, lipoprotein lipase, alpha-2-macroglobulin and the 40, 000 molecular weight receptor-associated protein. Neuroscience 65(4):1009–1025PubMedCrossRefGoogle Scholar
  33. Magara F, Müller U, Li ZW, Lipp HP, Weissmann C, Stagljar M, Wolfer DP (1999) Genetic background changes the pattern of forebrain commissure defects in transgenic mice underexpressing the beta-amyloid-precursor protein. Proc Natl Acad Sci USA 96(8):4656–4661PubMedCrossRefGoogle Scholar
  34. Mallm JP, Tschäpe JA, Hick M, Filippov MA, Müller UC (2010) Generation of conditional null alleles for APP and APLP2. Genesis 48(3):200–206. doi: 10.1002/dvg.20601 PubMedGoogle Scholar
  35. Mattson MP, Furukawa K (1998) Signaling events regulating the neurodevelopmental triad. Glutamate and secreted forms of beta-amyloid precursor protein as examples. Perspect Dev Neurobiol 5(4):337–352PubMedGoogle Scholar
  36. Mattson MP, Cheng B, Culwell AR, Esch FS, Lieberburg I, Rydel RE (1993) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 10(2):243–254. doi: 0896-6273(93)90315-I PubMedCrossRefGoogle Scholar
  37. Mucke L, Masliah E, Johnson WB, Ruppe MD, Alford M, Rockenstein EM, Forss-Petter S, Pietropaolo M, Mallory M, Abraham CR (1994) Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice. Brain Res 666(2):151–167. doi: 0006-8993(94)90767-6 PubMedCrossRefGoogle Scholar
  38. Müller UC, Zheng H (2011) Physiological functions of APP family proteins. CSH Perspect (in press)Google Scholar
  39. Müller U, Cristina N, Li ZW, Wolfer DP, Lipp HP, Rulicke T, Brandner S, Aguzzi A, Weissmann C (1994) Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell 79(5):755–765PubMedCrossRefGoogle Scholar
  40. Müller T, Meyer HE, Egensperger R, Marcus K (2008) The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer’s disease. Prog Neurobiol 85(4):393–406. doi: 10.1016/j.pneurobio.2008.05.002 PubMedCrossRefGoogle Scholar
  41. Musa A, Lehrach H, Russo VA (2001) Distinct expression patterns of two zebrafish homologues of the human APP gene during embryonic development. Dev Genes Evol 211(11):563–567. doi: 10.1007/s00427-001-0189-9 PubMedCrossRefGoogle Scholar
  42. Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59(6):861–872. doi: 10.1016/j.neuron.2008.08.019 PubMedCrossRefGoogle Scholar
  43. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232):981–989. doi: 10.1038/nature07767 PubMedCrossRefGoogle Scholar
  44. Norstrom EM, Zhang C, Tanzi R, Sisodia SS (2010) Identification of NEEP21 as a ss-amyloid precursor protein-interacting protein in vivo that modulates amyloidogenic processing in vitro. J Neurosci 30(46):15677–15685. doi: 10.1523/JNEUROSCI.4464-10.2010 PubMedCrossRefGoogle Scholar
  45. Perez RG, Zheng H, Van der Ploeg LH, Koo EH (1997) The beta-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J Neurosci 17(24):9407–9414PubMedGoogle Scholar
  46. Perez RG, Soriano S, Hayes JD, Ostaszewski B, Xia W, Selkoe DJ, Chen X, Stokin GB, Koo EH (1999) Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42. J Biol Chem 274(27):18851–18856PubMedCrossRefGoogle Scholar
  47. Perreau VM, Orchard S, Adlard PA, Bellingham SA, Cappai R, Ciccotosto GD, Cowie TF, Crouch PJ, Duce JA, Evin G, Faux NG, Hill AF, Hung YH, James SA, Li QX, Mok SS, Tew DJ, White AR, Bush AI, Hermjakob H, Masters CL (2010) A domain level interaction network of amyloid precursor protein and Abeta of Alzheimer’s disease. Proteomics 10(12):2377–2395. doi: 10.1002/pmic.200900773 PubMedCrossRefGoogle Scholar
  48. Phinney AL, Calhoun ME, Wolfer DP, Lipp HP, Zheng H, Jucker M (1999) No hippocampal neuron or synaptic bouton loss in learning-impaired aged beta-amyloid precursor protein-null mice. Neuroscience 90(4):1207–1216. doi: S0306-4522(98)00645-9 PubMedCrossRefGoogle Scholar
  49. Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26(27):7212–7221. doi: 10.1523/JNEUROSCI.1450-06.2006 PubMedCrossRefGoogle Scholar
  50. Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, Filippov MA, Herms J, Buchholz C, Eckman CB, Korte M, Wolfer DP, Müller UC (2007) The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 27(29):7817–7826. doi: 10.1523/JNEUROSCI.1026-07.2007 PubMedCrossRefGoogle Scholar
  51. Rogelj B, Mitchell JC, Miller CC, McLoughlin DM (2006) The X11/Mint family of adaptor proteins. Brain Res Rev 52(2):305–315. doi: 10.1016/j.brainresrev.2006.04.005 PubMedCrossRefGoogle Scholar
  52. Sano Y, Nakaya T, Pedrini S, Takeda S, Iijima-Ando K, Iijima K, Mathews PM, Itohara S, Gandy S, Suzuki T (2006) Physiological mouse brain Abeta levels are not related to the phosphorylation state of threonine-668 of Alzheimer’s APP. PLoS One 1:e51. doi: 10.1371/journal.pone.0000051 PubMedCrossRefGoogle Scholar
  53. Schrenk-Siemens K, Perez-Alcala S, Richter J, Lacroix E, Rahuel J, Korte M, Müller U, Barde YA, Bibel M (2008) Embryonic stem cell-derived neurons as a cellular system to study gene function: lack of amyloid precursor proteins APP and APLP2 leads to defective synaptic transmission. Stem Cells 26(8):2153–2163. doi: 10.1634/stemcells.2008-0010 PubMedCrossRefGoogle Scholar
  54. Seabrook GR, Smith DW, Bowery BJ, Easter A, Reynolds T, Fitzjohn SM, Morton RA, Zheng H, Dawson GR, Sirinathsinghji DJ, Davies CH, Collingridge GL, Hill RG (1999) Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology 38(3):349–359. doi: S0028390898002044 PubMedCrossRefGoogle Scholar
  55. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113. doi: 10.1016/j.bbr.2008.02.016 PubMedCrossRefGoogle Scholar
  56. Sennvik K, Fastbom J, Blomberg M, Wahlund LO, Winblad B, Benedikz E (2000) Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett 278(3):169–172. doi: S0304394099009295 PubMedCrossRefGoogle Scholar
  57. Slunt HH, Thinakaran G, Von Koch C, Lo AC, Tanzi RE, Sisodia SS (1994) Expression of a ubiquitous, cross-reactive homologue of the mouse beta-amyloid precursor protein (APP). J Biol Chem 269(4):2637–2644PubMedGoogle Scholar
  58. Soba P, Eggert S, Wagner K, Zentgraf H, Siehl K, Kreger S, Lower A, Langer A, Merdes G, Paro R, Masters CL, Müller U, Kins S, Beyreuther K (2005) Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 24(20):3624–3634PubMedCrossRefGoogle Scholar
  59. Steinbach JP, Müller U, Leist M, Li ZW, Nicotera P, Aguzzi A (1998) Hypersensitivity to seizures in beta-amyloid precursor protein deficient mice. Cell Death Differ 5(10):858–866PubMedCrossRefGoogle Scholar
  60. Szodorai A, Kuan YH, Hunzelmann S, Engel U, Sakane A, Sasaki T, Takai Y, Kirsch J, Müller U, Beyreuther K, Brady S, Morfini G, Kins S (2009) APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J Neurosci 29(46):14534–14544. doi: 10.1523/JNEUROSCI.1546-09.2009 PubMedCrossRefGoogle Scholar
  61. Tamayev R, Zhou D, D’Adamio L (2009) The interactome of the amyloid beta precursor protein family members is shaped by phosphorylation of their intracellular domains. Mol Neurodegener 4:28. doi: 10.1186/1750-1326-4-28 PubMedCrossRefGoogle Scholar
  62. Tamayev R, Matsuda S, Giliberto L, Arancio O, D’Adamio L (2011) APP heterozygosity averts memory deficit in knockin mice expressing the Danish dementia BRI2 mutant. EMBO J 30(12):2501–2509. doi: 10.1038/emboj.2011.161 PubMedCrossRefGoogle Scholar
  63. Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NM, Turner PR, Bilkey DK, Tate WP, Abraham WC (2008) Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol Dis 31(2):250–260. doi: 10.1016/j.nbd.2008.04.011 PubMedCrossRefGoogle Scholar
  64. Thinakaran G, Kitt CA, Roskams AJ, Slunt HH, Masliah E, von Koch C, Ginsberg SD, Ronnett GV, Reed RR, Price DL et al (1995) Distribution of an APP homolog, APLP2, in the mouse olfactory system: a potential role for APLP2 in axogenesis. J Neurosci 15(10):6314–6326PubMedGoogle Scholar
  65. Tyler SJ, Dawbarn D, Wilcock GK, Allen SJ (2002) Alpha- and beta-secretase: profound changes in Alzheimer’s disease. Biochem Biophys Res Commun 299(3):373–376. doi: S0006291X02026359 PubMedCrossRefGoogle Scholar
  66. von Koch CS, Zheng H, Chen H, Trumbauer M, Thinakaran G, van der Ploeg LH, Price DL, Sisodia SS (1997) Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol Aging 18(6):661–669CrossRefGoogle Scholar
  67. Walsh DM, Minogue AM, Sala Frigerio C, Fadeeva JV, Wasco W, Selkoe DJ (2007) The APP family of proteins: similarities and differences. Biochem Soc Trans 35(Pt 2):416–420. doi: 10.1042/BST0350416 PubMedGoogle Scholar
  68. Wang P, Yang G, Mosier DR, Chang P, Zaidi T, Gong YD, Zhao NM, Dominguez B, Lee KF, Gan WB, Zheng H (2005) Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP-Like protein 2. J Neurosci 25(5):1219–1225PubMedCrossRefGoogle Scholar
  69. Wang B, Yang L, Wang Z, Zheng H (2007) Amyolid precursor protein mediates presynaptic localization and activity of the high-affinity choline transporter. Proc Natl Acad Sci USA 104(35):14140–14145. doi: 10.1073/pnas.0704070104 PubMedCrossRefGoogle Scholar
  70. Wang Z, Wang B, Yang L, Guo Q, Aithmitti N, Songyang Z, Zheng H (2009) Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J Neurosci 29(35):10788–10801. doi: 10.1523/JNEUROSCI.2132-09.2009 PubMedCrossRefGoogle Scholar
  71. Weyer SW, Klevanski M, Delekate A, Voikar V, Aydin D, Hick M, Filippov M, Drost N, Schaller KL, Saar M, Vogt MA, Gass P, Samanta A, Jaschke A, Korte M, Wolfer DP, Caldwell JH, Müller UC (2011) APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO J 30(11):2266–2280. doi: 10.1038/emboj.2011.119 PubMedCrossRefGoogle Scholar
  72. White AR, Reyes R, Mercer JF, Camakaris J, Zheng H, Bush AI, Multhaup G, Beyreuther K, Masters CL, Cappai R (1999) Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res 842(2):439–444. doi: S0006-8993(99)01861-2 PubMedCrossRefGoogle Scholar
  73. Wolfe MS, Guenette SY (2007) APP at a glance. J Cell Sci 120(Pt 18):3157–3161. doi: 10.1242/jcs.03481 PubMedCrossRefGoogle Scholar
  74. Yang G, Gong YD, Gong K, Jiang WL, Kwon E, Wang P, Zheng H, Zhang XF, Gan WB, Zhao NM (2005) Reduced synaptic vesicle density and active zone size in mice lacking amyloid precursor protein (APP) and APP-like protein 2. Neurosci Lett 384(1–2):66–71. doi: 10.1016/j.neulet.2005.04.040 PubMedCrossRefGoogle Scholar
  75. Yang L, Wang Z, Wang B, Justice NJ, Zheng H (2009) Amyloid precursor protein regulates Cav1.2 L-type calcium channel levels and function to influence GABAergic short-term plasticity. J Neurosci 29(50):15660–15668. doi: 10.1523/JNEUROSCI.4104-09.2009 PubMedCrossRefGoogle Scholar
  76. Yao LL, Liu XY, Jin JY, Tao BB, Chen YJ, Yu YC, Bian WH, Yu J, Huang J, Wang YG (2011) Expression and ultrastructural localization of Mint2 in the spinal cord of rats. Mol Biol Rep 38(1):667–673. doi: 10.1007/s11033-010-0153-8 PubMedCrossRefGoogle Scholar
  77. Young-Pearse TL, Bai J, Chang R, Zheng JB, LoTurco JJ, Selkoe DJ (2007) A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. J Neurosci 27(52):14459–14469. doi: 10.1523/JNEUROSCI.4701-07.2007 PubMedCrossRefGoogle Scholar
  78. Zheng H, Koo EH (2006) The amyloid precursor protein: beyond amyloid. Mol Neurodegener 1:5. doi: 10.1186/1750-1326-1-5 PubMedCrossRefGoogle Scholar
  79. Zheng H, Jiang M, Trumbauer ME, Sirinathsinghji DJ, Hopkins R, Smith DW, Heavens RP, Dawson GR, Boyce S, Conner MW, Stevens KA, Slunt HH, Sisoda SS, Chen HY, Van der Ploeg LH (1995) Beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81(4):525–531PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dorothee Aydin
    • 1
  • Sascha W. Weyer
    • 1
  • Ulrike C. Müller
    • 1
  1. 1.Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany

Personalised recommendations