Skip to main content
Log in

Corticomotor plasticity induced by tongue-task training in humans: a longitudinal fMRI study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Corticomotor pathways may undergo neuroplastic changes in response to acquisition of new motor skills. Little is known about the motor control strategies for learning new tongue tasks. The aim of this study was to investigate the longitudinal effect of novel tongue-task training on corticomotor neuroplasticity. Thirteen healthy, right-handed men, aged 24–35 years (mean age ± SD: 27.3 ± 0.3 years), performed a training task consisting of standardized tongue protrusion onto a force transducer. The tongue task consisted of a relax–protrude–hold–relax cycle with 1.0 N as the target at the hold phase lasting for 1.5 s. Subjects repeated this task for 1 h. Functional magnetic resonance imaging was carried out before the tongue-task training (baseline), 1-h after the training, and one-day and one-week follow-up. During scanning, the subjects performed tongue protrusion in blocks interspersed with rest. A region-of-interest (ROI) approach and an explorative search were implemented for the analysis of corticomotor activity across conditions. All subjects completed the tongue-task training (mean success rate 43.0 ± 13.2%). In the baseline condition, tongue protrusion resulted in bilateral activity in regions most typically associated with a motor task including medial frontal gyrus (supplementary motor area [SMA]), precentral gyrus (tongue motor cortex), putamen, thalamus, and cerebellum. The ROI analysis revealed increased activity in the precentral gyrus already 1 h post-training. One day after the training, increased activity was observed in the precentral gyrus, SMA, putamen, and cerebellum. No increase was found 1 week after training. Correlation analyses between changes in success rates and changes in the numbers of voxels showed robust associations for left Area 4a in primary motor cortex 1 h, 1 day, and 1 week after the tongue-task training and for the left Area 4p in primary motor cortex and the left lateral premotor cortex 1 day after the training. In the unrestricted analysis, increased activity was found in the parahippocampal gyrus 1 h after the tongue-task training and remained for a week. Decreased activity was found in right post-central and middle frontal gyri 1 h and 1 week post-training. The results verified the involvement of specific corticomotor areas in response to tongue protrusion. Short-term tongue-task training was associated with longer-lasting (up to 1 week) changes in motor-related brain activity. The results suggested that primary motor areas are involved in the early and late stages, while other motor areas mainly are engaged in the later stage of corticomotor neuroplasticity of the tongue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashburner J, Andersson JL, Friston KJ (1999) High-dimensional image registration using symmetric priors. Neuroimage 9:619–628

    Article  PubMed  CAS  Google Scholar 

  • Baad-Hansen L, Blicher JU, Lapitskaya N, Nielsen JF, Svensson P (2009) Intra-cortical excitability in healthy human subjects after tongue training. J Oral Rehabil 36:427–434

    Article  PubMed  CAS  Google Scholar 

  • Beisteiner R, Erdler M, Mayer D, Gartus A, Edward V, Kaindl T, Golaszewski S, Lindinger G, Deecke L (1999) A marker for differentiation of capabilities for processing of musical harmonies as detected by magnetoencephalography in musicians. Neurosci Lett 277:37–40

    Article  PubMed  CAS  Google Scholar 

  • Boudreau S, Romaniello A, Wang K, Svensson P, Sessle BJ, Arendt-Nielsen L (2007) The effects of intra-oral pain on motor cortex neuroplasticity associated with short-term novel tongue-protrusion training in humans. Pain 132:169–178

    Article  PubMed  Google Scholar 

  • Boudreau SA, Hennings K, Svensson P, Sessle BJ, Arendt-Nielsen L (2010) The effects of training time, sensory loss and pain on human motor learning. J Oral Rehabil 37(9):704–718

    Article  PubMed  CAS  Google Scholar 

  • Brett M, Anton J, Valabregue R, Poline J (2002) Region of interest analysis using an SPM toolbox [Abstract: 8th International Conference on Functional Mapping of the Human Brain, June 2–6, 2002, Sendai, Japan]. Neuroimage 16

  • Buchner H, Kauert C, Radermacher I (1995) Short-term changes of finger representation at the somatosensory cortex in humans. Neurosci Lett 198:57–59

    Article  PubMed  CAS  Google Scholar 

  • Cheyne D, Kristeva R, Deecke L (1991) Homuncular organization of human motor cortex as indicated by neuromagnetic recordings. Neurosci Lett 122:17–20

    Article  PubMed  CAS  Google Scholar 

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    PubMed  CAS  Google Scholar 

  • Corfield DR, Murphy K, Josephs O, Fink GR, Frackowiak RS, Guz A, Adams L, Turner R (1999) Cortical and subcortical control of tongue movement in humans: a functional neuroimaging study using fMRI. J Appl Physiol 86:1468–1477

    PubMed  CAS  Google Scholar 

  • Dellow PG, Lund JP (1971) Evidence for central timing of rhythmical mastication. J Physiol 215:1–13

    PubMed  CAS  Google Scholar 

  • Dinardo LA, Travers JB (1994) Hypoglossal neural activity during ingestion and rejection in the awake rat. J Neurophysiol 72:1181–1191

    PubMed  CAS  Google Scholar 

  • Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15:161–167

    Article  PubMed  CAS  Google Scholar 

  • Dubner R, Sessle BJ, Storey AT (1978) The neural basis of oral and facial function. Plenum, New York

    Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Ernberg M, Serra E, Baad-Hansen L, Svensson P (2009) Influence of topical anaesthesia on the corticomotor response to tongue training. Arch Oral Biol 54:696–704

    Article  PubMed  CAS  Google Scholar 

  • Floyer-Lea A, Matthews PM (2005) Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol 94:512–518

    Article  PubMed  CAS  Google Scholar 

  • Foerster O (1936) Motorische felder und bahnen. Springer, Berlin

    Google Scholar 

  • Friston KJ, Josephs O, Zarahn E, Holmes AP, Rouquette S, Poline J (2000) To smooth or not to smooth? Bias and efficiency in fMRI time-series analysis. Neuroimage 12:196–208

    Article  PubMed  CAS  Google Scholar 

  • Gavazzi C, Nave RD, Petralli R, Rocca MA, Guerrini L, Tessa C, Diciotti S, Filippi M, Piacentini S, Mascalchi M (2007) Combining functional and structural brain magnetic resonance imaging in Huntington disease. J Comput Assist Tomogr 31:574–580

    Article  PubMed  Google Scholar 

  • Giorgio A, Portaccio E, Stromillo ML, Marino S, Zipoli V, Battaglini M, Blandino A, Bartolozzi ML, Siracusa G, Amato MP, De Stefano N (2010) Cortical functional reorganisation and its relationship with brain structural damage in patients with benign multiple sclerosis. Mult Scler [Epub ahead of print]

  • Grafton ST, Woods RP, Mazziotta JC, Phelps ME (1991) Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography. J Neurophysiol 66:735–743

    PubMed  CAS  Google Scholar 

  • Grafton ST, Woods RP, Mazziotta JC (1993) Within-arm somatotopy in human motor areas determined by positron emission tomography imaging of cerebral blood flow. Exp Brain Res 95:172–176

    Article  PubMed  CAS  Google Scholar 

  • Halkjaer L, Melsen B, McMillan AS, Svensson P (2006) Influence of sensory deprivation and perturbation of trigeminal afferent fibers on corticomotor control of human tongue musculature. Exp Brain Res 170:199–205

    Article  PubMed  CAS  Google Scholar 

  • Hari R, Karhu J, Hamalainen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734

    Article  PubMed  CAS  Google Scholar 

  • Hesselmann V, Sorger B, Lasek K, Guntinas-Lichius O, Krug B, Sturm V, Goebel R, Lackner K (2004) Discriminating the cortical representation sites of tongue and up movement by functional MRI. Brain Topogr 16:159–167

    Article  PubMed  Google Scholar 

  • Hiiemae KM, Palmer JB (2003) Tongue movements in feeding and speech. Crit Rev Oral Biol Med 14:413–429

    Article  PubMed  Google Scholar 

  • Ioffe ME (2004) Brain mechanisms for the formation of new movements during learning: the evolution of classical concepts. Neurosci Behav Physiol 34:5–18

    Article  PubMed  CAS  Google Scholar 

  • Jean A (1984a) Brainstem organization of the swallowing network. Brain Behav Evol 25:109–116

    Article  PubMed  CAS  Google Scholar 

  • Jean A (1984b) Control of the central swallowing program by inputs from the peripheral receptors. A review. J Auton Nerv Syst 10:225–233

    Article  PubMed  CAS  Google Scholar 

  • Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA 95:861–868

    Article  PubMed  CAS  Google Scholar 

  • Kawashima R, Itoh H, Ono S, Satoh K, Furumoto S, Gotoh R, Koyama M, Yoshioka S, Takahashi T, Yanagisawa T et al (1995) Activity in the human primary motor cortex related to arm and finger movements. Neuroreport 6:238–240

    Article  PubMed  CAS  Google Scholar 

  • Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M (2004) Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J Neurosci 24:628–633

    Article  PubMed  CAS  Google Scholar 

  • Koeneke S, Lutz K, Herwig U, Ziemann U, Jancke L (2006) Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability. Exp Brain Res 174:199–209

    Article  PubMed  CAS  Google Scholar 

  • Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG (2003) Motor learning elicited by voluntary drive. Brain 126:866–872

    Article  PubMed  Google Scholar 

  • Loubinoux I, Carel C, Alary F, Boulanouar K, Viallard G, Manelfe C, Rascol O, Celsis P, Chollet F (2001) Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Metab 21:592–607

    Article  PubMed  CAS  Google Scholar 

  • Lowe AA (1980) The neural regulation of tongue movements. Prog Neurobiol 15:295–344

    Article  PubMed  CAS  Google Scholar 

  • Lund JP (1991) Mastication and its control by the brain stem. Crit Rev Oral Biol Med 2:33–64

    PubMed  CAS  Google Scholar 

  • Maldjian JA, Gottschalk A, Patel RS, Detre JA, Alsop DC (1999) The sensory somatotopic map of the human hand demonstrated at 4 Tesla. Neuroimage 10:55–62

    Article  PubMed  CAS  Google Scholar 

  • Martin RE, Murray GM, Kemppainen P, Masuda Y, Sessle BJ (1997) Functional properties of neurons in the primate tongue primary motor cortex during swallowing. J Neurophysiol 78:1516–1530

    PubMed  CAS  Google Scholar 

  • Martin RE, Kemppainen P, Masuda Y, Yao D, Murray GM, Sessle BJ (1999) Features of cortically evoked swallowing in the awake primate (Macaca fascicularis). J Neurophysiol 82:1529–1541

    PubMed  CAS  Google Scholar 

  • Miller AJ (2002) Oral and pharyngeal reflexes in the mammalian nervous system: their diverse range in complexity and the pivotal role of the tongue. Crit Rev Oral Biol Med 13:409–425

    Article  PubMed  CAS  Google Scholar 

  • Muellbacher W, Boroojerdi B, Ziemann U, Hallett M (2001) Analogous corticocortical inhibition and facilitation in ipsilateral and contralateral human motor cortex representations of the tongue. J Clin Neurophysiol 18:550–558

    Article  PubMed  CAS  Google Scholar 

  • Murray GM, Sessle BJ (1992a) Functional properties of single neurons in the face primary motor cortex of the primate. I. Input and output features of tongue motor cortex. J Neurophysiol 67:747–758

    PubMed  CAS  Google Scholar 

  • Murray GM, Sessle BJ (1992b) Functional properties of single neurons in the face primary motor cortex of the primate. II. Relations with trained orofacial motor behavior. J Neurophysiol 67:759–774

    PubMed  CAS  Google Scholar 

  • Murray GM, Sessle BJ (1992c) Functional properties of single neurons in the face primary motor cortex of the primate. III. Relations with different directions of trained tongue protrusion. J Neurophysiol 67:775–785

    PubMed  CAS  Google Scholar 

  • Murray GM, Lin LD, Moustafa EM, Sessle BJ (1991) Effects of reversible inactivation by cooling of the primate face motor cortex on the performance of a trained tongue-protrusion task and a trained biting task. J Neurophysiol 65:511–530

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Katakura N (1995) Generation of masticatory rhythm in the brainstem. Neurosci Res 23:1–19

    PubMed  CAS  Google Scholar 

  • Nakamura A, Yamada T, Goto A, Kato T, Ito K, Abe Y, Kachi T, Kakigi R (1998) Somatosensory homunculus as drawn by MEG. Neuroimage 7:377–386

    Article  PubMed  CAS  Google Scholar 

  • Nakasato N, Itoh H, Hatanaka K, Nakahara H, Kanno A, Yoshimoto T (2001) Movement-related magnetic fields to tongue protrusion. Neuroimage 14:924–935

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Grafman J, Hallett M (1994) Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263:1287–1289

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74:1037–1045

    PubMed  CAS  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  • Rao SM, Binder JR, Hammeke TA, Bandettini PA, Bobholz JA, Frost JA, Myklebust BM, Jacobson RD, Hyde JS (1995) Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology 45:919–924

    PubMed  CAS  Google Scholar 

  • Rosenkranz K, Nitsche MA, Tergau F, Paulus W (2000) Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosci Lett 296:61–63

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Watanabe E, Onodera Y, Itagaki H, Yamamoto E, Koizumi H, Miyashita Y (1995) Functional mapping of the human somatosensory cortex with echo-planar MRI. Magn Reson Med 33:736–743

    Article  PubMed  CAS  Google Scholar 

  • Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23:393–415

    Article  PubMed  CAS  Google Scholar 

  • Sawczuk A, Mosier KM (2001) Neural control of tongue movement with respect to respiration and swallowing. Crit Rev Oral Biol Med 12:18–37

    Article  PubMed  CAS  Google Scholar 

  • Schenck CH, Mahowald MW (1991) Injurious sleep behavior disorders (parasomnias) affecting patients on intensive care units. Intensive Care Med 17:219–224

    Article  PubMed  CAS  Google Scholar 

  • Sessle BJ, Yao D, Nishiura H, Yoshino K, Lee JC, Martin RE, Murray GM (2005) Properties and plasticity of the primate somatosensory and motor cortex related to orofacial sensorimotor function. Clin Exp Pharmacol Physiol 32:109–114

    Article  PubMed  Google Scholar 

  • Sessle BJ, Adachi K, Avivi-Arber L, Lee J, Nishiura H, Yao D, Yoshino K (2007) Neuroplasticity of face primary motor cortex control of orofacial movements. Arch Oral Biol 52:334–337

    Article  PubMed  CAS  Google Scholar 

  • Shinagawa H, Ono T, Ishiwata Y, Honda E, Sasaki T, Taira M, Iriki A, Kuroda T (2003) Hemispheric dominance of tongue control depends on the chewing-side preference. J Dent Res 82:278–283

    Article  PubMed  CAS  Google Scholar 

  • Smith A (1992) The control of orofacial movements in speech. Crit Rev Oral Biol Med 3:233–267

    PubMed  CAS  Google Scholar 

  • Svensson P, Romaniello A, Arendt-Nielsen L, Sessle BJ (2003) Plasticity in corticomotor control of the human tongue musculature induced by tongue-task training. Exp Brain Res 152:42–51

    Article  PubMed  Google Scholar 

  • Svensson P, Romaniello A, Wang K, Arendt-Nielsen L, Sessle BJ (2006) One hour of tongue-task training is associated with plasticity in corticomotor control of the human tongue musculature. Exp Brain Res 173:165–173

    Article  PubMed  CAS  Google Scholar 

  • Tessa C, Lucetti C, Diciotti S, Baldacci F, Paoli L, Cecchi P, Giannelli M, Ginestroni A, Del Dotto P, Ceravolo R, Vignali C, Bonuccelli U, Mascalchi M (2010) Decreased and increased cortical activation coexist in de novo Parkinson’s disease. Exp Neurol 224:299–306

    Article  PubMed  Google Scholar 

  • Travers JB, DiNardo LA, Karimnamazi H (2000) Medullary reticular formation activity during ingestion and rejection in the awake rat. Exp Brain Res 130:78–92

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Doyon J, Karni A (2002) Imaging brain plasticity during motor skill learning. Neurobiol Learn Mem 78:553–564

    Article  PubMed  Google Scholar 

  • Valera EM, Spencer RM, Zeffiro TA, Makris N, Spencer TJ, Faraone SV, Biederman J, Seidman LJ (2010) Neural substrates of impaired sensorimotor timing in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 68:359–367

    Article  PubMed  Google Scholar 

  • Warraich Z, Kleim JA (2010) Neural plasticity: the biological substrate for neurorehabilitation. PMR 2:S208–S219

    Google Scholar 

  • Wassermann EM, McShane LM, Hallett M, Cohen LG (1992) Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 85:1–8

    PubMed  CAS  Google Scholar 

  • Watanabe J, Sugiura M, Miura N, Watanabe Y, Maeda Y, Matsue Y, Kawashima R (2004) The human parietal cortex is involved in spatial processing of tongue movement-an fMRI study. Neuroimage 21:1289–1299

    Article  PubMed  Google Scholar 

  • Westberg K, Clavelou P, Sandstrom G, Lund JP (1998) Evidence that trigeminal brainstem interneurons form subpopulations to produce different forms of mastication in the rabbit. J Neurosci 18:6466–6479

    PubMed  CAS  Google Scholar 

  • Wiesenfeld Z, Halpern BP, Tapper DN (1977) Licking behavior: evidence of hypoglossal oscillator. Science 196:1122–1124

    Article  PubMed  CAS  Google Scholar 

  • Wilson SA, Thickbroom GW, Mastaglia FL (1993) Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. The representation of two intrinsic hand muscles. J Neurol Sci 118:134–144

    Article  PubMed  CAS  Google Scholar 

  • Yamamura K, Narita N, Yao D, Martin RE, Masuda Y, Sessle BJ (2002) Effects of reversible bilateral inactivation of face primary motor cortex on mastication and swallowing. Brain Res 944:40–55

    Article  PubMed  CAS  Google Scholar 

  • Yao D, Yamamura K, Narita N, Martin RE, Murray GM, Sessle BJ (2002a) Neuronal activity patterns in primate primary motor cortex related to trained or semiautomatic jaw and tongue movements. J Neurophysiol 87:2531–2541

    PubMed  Google Scholar 

  • Yao D, Yamamura K, Narita N, Murray GM, Sessle BJ (2002b) Effects of reversible cold block of face primary somatosensory cortex on orofacial movements and related face primary motor cortex neuronal activity. Somatosens Mot Res 19:261–271

    Article  PubMed  Google Scholar 

  • Zhang Y, Boudreau S, Wang M, Wang K, Sessle B, Arendt-Nielsen L, Svensson P (2010) Effects of periodontal afferent inputs on corticomotor excitability in humans. J Oral Rehabil 37:39–47

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Muellbacher W, Hallett M, Cohen LG (2001) Modulation of practice-dependent plasticity in human motor cortex. Brain 124:1171–1181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

BJS involvement was supported by CIHR grant MT-4918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Svensson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arima, T., Yanagi, Y., Niddam, D.M. et al. Corticomotor plasticity induced by tongue-task training in humans: a longitudinal fMRI study. Exp Brain Res 212, 199–212 (2011). https://doi.org/10.1007/s00221-011-2719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2719-7

Keywords

Navigation