Skip to main content
Log in

Rapid motor responses quickly integrate visuospatial task constraints

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We have recently shown that subjects can appropriately modulate their rapid motor responses (traditionally termed reflexes) to move their hand to a spatial target when the target is displayed ~2 s before a mechanical perturbation (Pruszynski et al. in J Neurophysiol 100:224–238, 2008). The goal of this study was to investigate how quickly visual information can be used to modulate rapid motor responses to an impending mechanical perturbation. Following a 2 s to 10 ms target preview delay (PD), a perturbation either displaced the subject’s hand into or out of the previewed target. We also included a condition, where the target appeared after perturbation onset (target PD = +90 ms). In all cases, subjects were instructed to react as quickly as possible to the perturbation by reaching into the displayed target. Our results indicate that subjects began to incorporate visual information into their rapid motor responses with PDs as small as 70 ms. Interestingly, subjects reacted faster when the target was presented ~150 ms before the perturbation than when they had 2 s to prepare a response. Using receiver operative characteristic (ROC) analysis, we examined modulation of muscle activity as a function of preview delay in three predefined epochs. No modulation was found in the short-latency epoch (R1; 20–45 ms). In contrast, both the long-latency (45–105 ms) and voluntary (120–180 ms) epochs were modulated at essentially the same time, 140 ms from visual presentation of the target to the beginning of each respective epoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akazawa K, Aldridge JW, Steeves JD, Stein RB (1982) Modulation of stretch reflexes during locomotion in the mesencephalic cat. J Physiol 329:553–567

    PubMed  CAS  Google Scholar 

  • Amlôt R, Walker R, Driver J, Spence C (2003) Multimodal visual-somatosensory integration in saccade generation. Neuropsychologia 41(1):1–15

    Article  PubMed  Google Scholar 

  • Bastian A, Schoner G, Riehle A (2003) Preshaping and continuous evolution of motor cortical representations during movement preparation. Eur J Neurosci 18:2047–2058

    Article  PubMed  Google Scholar 

  • Bell AH, Meredith MA, Van Opstal AJ, Munoz DP (2005) Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements. J Neurophysiol 93(6):3659–3673

    Article  PubMed  Google Scholar 

  • Bonnet M (1983) Anticipatory changes of long-latency stretch responses during preparation for directional hand movements. Brain Res 280:51–62

    Article  PubMed  CAS  Google Scholar 

  • Capaday C, Stein RB (1986) Amplitude-modulation of the soleus H-reflex in the human during walking and standing. J Neurosci 6:1308–1313

    PubMed  CAS  Google Scholar 

  • Carlsen AN, Mackinnon CD (2010) Motor preparation is modulated by the resolution of the response timing information. Brain Res 1322:38–49

    Article  PubMed  CAS  Google Scholar 

  • Christakos CN, Wolf H, Meyerlohmann J (1983) The M2 electro-myographic response to random perturbations of arm movements is missing in long trained monkeys. Neurosci Lett 41:295–300

    Article  PubMed  CAS  Google Scholar 

  • Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV (2006) Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci 26:3697–3712

    Article  PubMed  CAS  Google Scholar 

  • Colebatch JG, Gandevia SC, McCloskey DI, Potter EK (1979) Subject instruction and long latency reflex responses to muscle stretch. J Physiol 292:527–534

    PubMed  CAS  Google Scholar 

  • Corneil BD, Olivier E, Munoz DP (2004) Visual responses on neck muscles reveal selective gating that prevents express saccades. Neuron 42:831–841

    Article  PubMed  CAS  Google Scholar 

  • Crago PE, Houk JC, Hasan Z (1976) Regulatory actions of human stretch reflex. J Neurophysiol 39:925–935

    PubMed  CAS  Google Scholar 

  • Day BL, Rothwell JC, Marsden CD (1983) Interaction between the long-latency stretch reflex and voluntary electro-myographic activity prior to a rapid voluntary motor reaction. Brain Res 270:55–62

    Article  PubMed  CAS  Google Scholar 

  • Diederich A, Colonius H (2004) Bimodal and trimodal multisensory enhancement: effects of stimulus onset and intensity on reaction time. Percept Psychophys 66(8):1388–1404

    Article  PubMed  Google Scholar 

  • Diederich A, Colonius H, Bockhorst D, Tabeling S (2003) Visual-tactile spatial interaction in saccade generation. Exp Brain Res 148(3):328–337

    PubMed  Google Scholar 

  • Dufresne JR, Soechting JF, Terzuolo CA (1980) Modulation of the myotatic reflex gain in man during intentional movements. Brain Res 193:67–84

    Article  PubMed  CAS  Google Scholar 

  • Forssberg H, Grillner S, Rossignol S (1975) Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res 85:103–107

    Article  PubMed  CAS  Google Scholar 

  • Forster B, Cavina-Pratesi C, Aglioti SM, Berlucchi G (2002) Redundant target effect and intersensory facilitation from visual-tactile interactions in simple reaction time. Exp Brain Res 143(4):480–487

    Article  PubMed  Google Scholar 

  • Frens MA, Van Opstal AJ, Van der Willigen RF (1995) Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements. Percept Psychophys 57(6):802–816

    Article  PubMed  CAS  Google Scholar 

  • Giard MH, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: A behavioural and electrophysiological study. J Cogn Neurosci 11(5):473–490

    Article  PubMed  CAS  Google Scholar 

  • Godschalk M, Lemon RN, Kuypers HG, van der Steen J (1985) The involvement of monkey premotor cortex neuronesin preparation of visually cued arm movements. Behav Brain Res 18:143–157

    Article  PubMed  CAS  Google Scholar 

  • Graziano MS, Yap GS, Gross CG (1994) Coding of visual space by premotor neurons. Science 266(5187):1054–1057

    Article  PubMed  CAS  Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Hagbarth KE (1967) EMG studies of stretch reflexes in man. Electroencephalogr Clin Neurophysiol 25:74–79

    Google Scholar 

  • Hammond PH (1956) The influence of prior instruction to the subject on an apparently involuntary neuro-muscular response. J Physiol 132:17P–18P

    Google Scholar 

  • Hershenson M (1962) Reaction time as a measure of intersensory facilitation. J Exp Psychol 63:289–293

    Article  PubMed  CAS  Google Scholar 

  • Herter TM, Korbel T, Scott SH (2009) Comparison of neural response in primary motor cortex to transient and continuous loads during posture. J Neurophysiol 101:150–163

    Article  PubMed  Google Scholar 

  • Jaeger RJ, Gottlieb GL, Agarwal GC, Tahmoush AJ (1982) Afferent contributions to stretch evoked myoelectric responses. J Neurophysiol 48:403–418

    PubMed  CAS  Google Scholar 

  • Johnson MT, Kipnis AN, Lee MC, Ebner TJ (1993) Independent control of reflex and volitional EMG modulation during sinusoidal pursuit tracking in humans. Exp Brain Res 96:347–362

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Haggard P, Gomi H (2006) Transcranial magnetic stimulation over sensorimotor cortex disrupts anticipatory reflex gain modulation for skilled action. J Neurosci 26:9272–9281

    Article  PubMed  CAS  Google Scholar 

  • Kurtzer I, Herter TM, Scott SH (2005) Random change in cortical load representation suggests distinct control of posture and movement. Nat Neurosci 8(4):498–504

    PubMed  CAS  Google Scholar 

  • Kurtzer I, Pruszynski JA, Scott SH (2008) Long-latency reflexes of the human arm reflect an internal model of limb dynamics. Curr Biol 18(6):449–453

    Article  PubMed  CAS  Google Scholar 

  • Lamarre Y, Busby L, Spidallieri G (1983) Fast ballistic arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. I. Activity of precentral cortical neurons. J Neurophysiol 50(6):1343–1358

    PubMed  CAS  Google Scholar 

  • Lee RG, Tatton WG (1982) Long latency reflexes to imposed displacements of the human wrist: dependence on duration of movement. Exp Brain Res 45:207–216

    Article  PubMed  CAS  Google Scholar 

  • Lewis GN, MacKinnon CD, Perreault EJ (2006) The effect of task instruction on the excitability of spinal and supraspinal reflex pathways projecting to the biceps muscle. Exp Brain Res 174:413–425

    Article  PubMed  Google Scholar 

  • Lourenco G, Iglesias C, Cavallari P, Pierrot-Deseilligny EP, Marchand-Pauvert V (2006) Mediation of late excitation from human hand muscles via parallel group II spinal and group I transcortical pathways. J Physiol 572(2):585–603

    Article  PubMed  CAS  Google Scholar 

  • Mackinnon CD, Bissig D, Chiusane J, Miller E, Rudnick L, Jager C, Zhang Y, Mille ML, Rogers MW (2006) Preparation of anticipatory postural asjustments prior to stepping. J Neurophysiol 6:4368–4379

    Google Scholar 

  • Marsden CD, Merton PA, Morton HB (1972) Changes in loop gain with force in human muscle servo. J Physiol 222:32P–34P

    PubMed  CAS  Google Scholar 

  • Meredith MA, Stein BE (1983) Interactions among converging sensory inputs in the superior colliculus. Science 221(4608):389–391

    Article  PubMed  CAS  Google Scholar 

  • Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56(3):640–662

    PubMed  CAS  Google Scholar 

  • Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7(10):3215–3229

    PubMed  CAS  Google Scholar 

  • Mutha PK, Boulinguez PB, Sainburg RL (2008) Visual modulation of proprioceptive reflexes during movement. Brain Res 1246:54–69

    Article  PubMed  CAS  Google Scholar 

  • Nozawa G, Reuter-Lorenz PA, Hughes HC (1994) Parallel and serial processes in the human oculomotor system: bimodal integration and express saccades. Biol Cybern 72(1):19–34

    Article  PubMed  CAS  Google Scholar 

  • Pashler HE (1999) The psychology of attention, 2nd edn. MIT Press, Massachusetts

    Google Scholar 

  • Pearce SL, Miles TS, Thompson PD, Nordstrom MA (2003) Is the long-latency stretch reflex in human masseter transcortical? Exp Brain Res 150:465–472

    PubMed  Google Scholar 

  • Pruszynski JA, Kurtzer I, Scott SH (2008) Rapid motor responses are appropriately tuned to the metrics of a visuospatial task. J Neurophysiol 100:224–238

    Article  PubMed  Google Scholar 

  • Pruszynski JA, Kurtzer I, Lillicrap TP, Scott SH (2009) Temporal evolution of “Automatic Gain-Scaling”. J Neurophysiol 97(6):4368–4379

    Google Scholar 

  • Riehle A, Requin J (1993) The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex. Behav Brain Res 53:35–49

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981a) Afferent properties of periaracute neurons in macaque monkeys. I. Somatosensory responses. Behav Brain Res 2(2):125–146

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981b) Afferent properties of periaracute neurons in macaque monkeys. II. Visual responses. Behav Brain Res 2(2):147–163

    Article  PubMed  CAS  Google Scholar 

  • Rothwell JC, Traub MM, Marsden CD (1980) Influence of voluntary intent on the human long-latency stretch reflex. Nature 286:496–498

    Article  PubMed  CAS  Google Scholar 

  • Rowland BA, Quessy S, Stanford TR, Stein BE (2007) Multisensory integration shortens physiological response latencies. J Neurosci 27(22):5879–5884

    Article  PubMed  CAS  Google Scholar 

  • Scott SH (1999) Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. J Neurosci Methods 89:119–127

    Article  PubMed  CAS  Google Scholar 

  • Scott SH (2004) Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 5:532–546

    Article  PubMed  CAS  Google Scholar 

  • Shedmehr R, Wise S (2005) The computational neurobiology of reaching and pointing: a foundation for motor learning. MIR Press, Cambridge, MA

    Google Scholar 

  • Shemmell J, An JH, Perreault EJ (2009) The different role of motor cortex in stretch reflex modulation induced by changes in environmental mechanics and verbal instruction. J Neurosci 42:13255–13263

    Article  Google Scholar 

  • Thach WT (1978) Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. J Neurophysiol 41(3):654–676

    PubMed  CAS  Google Scholar 

  • Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76:4040–4055

    PubMed  CAS  Google Scholar 

  • Tianji J, Evarts EV (1976) Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J Neurophysiol 39:1062–1068

    Google Scholar 

  • Wallace MT, Wilkinson LK, Stein BE (1996) Representation and integration of multiple sensory inputs in primate superior colliculus. J Neurophysiol 76(2):1246–1266

    PubMed  CAS  Google Scholar 

  • Wallace MT, Meredith MA, Stein BE (1998) Multisensory integration in the superior colliculus of the alert cat. J Neurophysiol 80(2):1006–1010

    PubMed  CAS  Google Scholar 

  • Weinrich M, Wise SP (1982) The premotor cortex of the monkey. J Neurosci 2:1329–1345

    PubMed  CAS  Google Scholar 

  • Weinrich M, Wise SP, Mauritz KH (1984) A Neurophysiological study of the premotor cortex in the thesus monkey. Brain 107:385–414

    Article  PubMed  Google Scholar 

  • Wolf SL, Segal RL (1996) Reducing human biceps brachi spinal stretch reflex magnitude. J Neurophysiol 75:1637–1646

    PubMed  CAS  Google Scholar 

  • Wolpaw JR (1980) Correlations between task-related activity and responses to perturbation in primate sensorimotor cortex. J Neurophysiol 44:1122-1138

    Google Scholar 

  • Wolpaw JR, O’Keefe JA (1984) Adaptive plasticity in the primate spinal stretch reflex: evidence for a two phase process. J Neurosci 4:2718–2724

    PubMed  CAS  Google Scholar 

  • Wolpaw JR, Braitman DJ, Segal RF (1983) Adaptive plasticity in primate spinal stretch reflex: initial development. J Neurophysiol 50:1296–1311

    PubMed  CAS  Google Scholar 

  • Wolpert DM, Selen L, Shadlen M (2009) Reflex gains are dynamically modulated based on accumulated evidence. Annual meeting of the society for neuroscience. Abstract #658.14

  • Zehr EP, Chua R (2000) Modulation of human cutaneous reflexes during rhythmic cyclical arm movement. Exp Brain Res 135:241–250

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Collins DF, Frigon A, Hoogenboom N (2003) Neural control of rhythmic human arm movement: phase dependence and task modulation of Hoffmann reflexes in forearm muscles. J Neurophysiol 89:12–21

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Engineering Research Council of Canada (NSERC). J.A.P received a salary award from the Canadian Institute for Health Research (CIHR). We thank Kim Moore and Justin Peterson for their technical support and Isaac Kurtzer for his input into the experiments.

Conflict of interest

S.H.S. is associated with BKIN Technologies, which commercializes the KINARM device used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Michaels, J.A., Pruszynski, J.A. et al. Rapid motor responses quickly integrate visuospatial task constraints. Exp Brain Res 211, 231–242 (2011). https://doi.org/10.1007/s00221-011-2674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2674-3

Keywords

Navigation