Discovering affordances that determine the spatial structure of reach-to-grasp movements

Abstract

Extensive research has identified the affordances used to guide actions, as originally conceived by Gibson (Perceiving, acting, and knowing: towards an ecological psychology. Erlbaum, Hillsdale, 1977; The ecological approach to visual perception. Erlbaum, Hillsdale, 1979/1986). We sought to discover the object affordance properties that determine the spatial structure of reach-to-grasp movements—movements that entail both collision avoidance and targeting. First, we constructed objects that presented a significant collision hazard and varied properties relevant to targeting, namely, object width and size of contact surface. Participants reached-to-grasp objects at three speeds (slow, normal, and fast). In Experiment 1, we explored a “stop” task where participants grasped the objects without moving them. In Experiment 2, we studied “fly-through” movements where the objects were lifted. We discovered the object affordance properties that produced covariance in the spatial structure of reaches-to-grasp. Maximum grasp aperture (MGA) reflected affordances determined by collision avoidance. Terminal grasp aperture (TGA)—when the hand stops moving but prior to finger contact—reflected affordances relevant to targeting accuracy. A model with a single free parameter predicted the prehensile spatial structure and provided a functional affordance-based account of that structure. In Experiment 3, we investigated a “slam” task where participants reached-to-grasp flat rectangular objects on a tabletop. The affordance structure of this task was found to eliminate the collision risk and thus reduced safety margins in MGA and TGA to zero for larger objects. The results emphasize the role of affordances in determining the structure and scaling of reach-to-grasp actions. Finally, we report evidence supporting the opposition vector as an appropriate unit of analysis in the study of grasping and a unit of action that maps directly to affordance properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    M was subsequently derived in the final models by fitting the data with M as a free parameter. The values returned were slightly different (≈ 17 cm) from those originally estimated. Measuring M independently of the grasping task itself yields only an approximation. The model fits actually provide the best measures of this 'effectivity' (Turvey et al. 1981).

References

  1. Anquetil T, Jeannerod M (2007) Simulated actions in the first and in the third person perspectives share common representations. Behav Brain Res 1130:125–129. doi:10.1016/j.brainres.2006.10.091

    CAS  Google Scholar 

  2. Baud-Bovy G, Soechting JF (2001a) Visual localization of the center of mass of compact, asymmetric, two-dimensional shapes. J Exp Psychol Hum Percept Perform 27:692–706. doi:10.1037/0096-1523.27.3.692

    PubMed  Article  CAS  Google Scholar 

  3. Baud-Bovy G, Soechting JF (2001b) Two virtual fingers in the control of the tripod grasp. J Neurophysiol 86:604–615. doi:10.1007/s00221-002-1359-3

    PubMed  CAS  Google Scholar 

  4. Bingham GP (1988) Task specific devices and the perceptual bottleneck. J Hum Mov Sci 7:225–264. doi:10.1016/0167-9457(88)90013-9

    Article  Google Scholar 

  5. Bingham GP, Muchisky MM (1993a) Center of mass perception and inertial frames of reference. Percept Psychophys 54:617–632. doi:10.1016/j.cub.2010.01.054

    PubMed  Article  CAS  Google Scholar 

  6. Bingham GP, Muchisky MM (1993b) Center of mass perception: perturbation of symmetry. Percept Psychophys 54:633–639

    PubMed  Article  CAS  Google Scholar 

  7. Bingham GP, Muchisky MM (1995) “Center of mass perception”: affordances as dispositions determined by dynamics. In: Flach JM, Hancock P, Caird J, Vicente K (eds) Global perspectives on the ecology of human-machine systems, vol 1. Erlbaum, Hillsdale

    Google Scholar 

  8. Bingham GP, Hughes K, Mon-Williams M (2008) The coordination pattern observed when two hands reach-to-grasp. Behav Brian Res 184:283–293. doi:10.1007/s00221-007-1107-9

    Google Scholar 

  9. Bootsma RJ, Marteniuk RG, MacKenzie CL, Zaal FTJM (1994) The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size, and object width on kinematic characteristics. Behav Brain Res 98:535–541. doi:10.1007/BF00233990

    CAS  Google Scholar 

  10. Coats R, Bingham GP, Mon-Williams M (2008) Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements. Exp Brain Res 189:211–220. doi:10.1007/s00221-008-1418-5

    PubMed  Article  Google Scholar 

  11. Frak V, Paulignan Y, Jeannerod M (2001) Orientation of the opposition axis in mentally simulated grasping. Exp Brain Res 136:120–127. doi:10.1007/s002210000583

    PubMed  Article  CAS  Google Scholar 

  12. Gibson JJ (1977) The theory of affordances. In: Shaw R, Bransford J (eds) Perceiving, acting, and knowing: towards an ecological psychology. Hillsdale NJ, Erlbaum

    Google Scholar 

  13. Gibson JJ (1979/1986) The ecological approach to visual perception. Hillsdale NJ, Erlbaum

  14. Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–156. doi:10.1038/349154a0

    PubMed  Article  CAS  Google Scholar 

  15. Goodale MA, Meenan JP, Bülthoff HH, Nicolle DA, Murphy KS, Racicot CI (1994a) Separate neural pathways for visual analysis of object shape in perception and prehension. Curr Biol 4:604–610. doi:10.1016/S0960-9822(00)00132-9

    PubMed  Article  CAS  Google Scholar 

  16. Goodale MA, Jakobsen LS, Keillor JM (1994b) Differences in the visual control of pantomimed and natural grasping movements. Neuropsychology 32:1159–1178. doi:10.1016/0028-3932(94)90100-7

    Article  CAS  Google Scholar 

  17. Harvey M, Jackson SR, Newport R, Krämer T, Morris DL, Dow L (2002) Is grasping impaired in hemispatial neglect? Behav Neurol 13:17–28

    CAS  Google Scholar 

  18. Iberall T, Bingham GP, Arbib MA (1986) Opposition space as a structuring concept for the analysis of skilled hand movements. In: Heuer H, From C (eds) Experimental brain research series 15. Springer, Berlin, pp 158–173

    Google Scholar 

  19. Jeannerod M (1984) The timing of natural prehension movements. J Motor Behav 16:235–254

    CAS  Google Scholar 

  20. Jeannerod M (1988) The neural and behavioural organization of goal-directed movements. Oxford University Press, Oxford

    Google Scholar 

  21. Jeannerod M (1997) The cognitive neuroscience of action. Blackwell, Oxford

    Google Scholar 

  22. Jeannerod M (1999) Visuomotor channels: their integration in goal-directed prehension. Hum Mov Sci 18:201–218. doi:10.1016/S0167-9457(99)00008-1

    Article  Google Scholar 

  23. Kelso JAS, Tuller B, Vatikiotis-Bateson E, Fowler CA (1984) Functionally specific articulatory cooperation following jaw perturbation during speech: evidence for coordinative structures. J Exp Psychol Hum Percept Perform 10:812–832. doi:10.1037//0096-1523.10.6.812

    PubMed  Article  CAS  Google Scholar 

  24. Lederman SJ, Wing AM (2003) Perceptual judgment, grasp point selection and object symmetry. Exp Brain Res 152:156–165. doi:10.1007/s00221-003-1522-5

    PubMed  Article  Google Scholar 

  25. Lee YL, Bingham GP (2010) Large perspective changes yield perception of metric shape that allows accurate feedforward reaches-to-grasp and it persists after the optic flow has stopped!. Exp Brain Res 204:559–573. doi:10.1007/s00221-010-2323-2

    PubMed  Article  Google Scholar 

  26. Lee YL, Crabtree CE, Norman JF, Bingham GP (2008) Poor shape perception is the reason reaches-to-grasp are visually guided online. Percept Psychophys 70(6):1032–1046. doi:10.3758/PP.70.6.1032

    PubMed  Article  Google Scholar 

  27. Loftus A, Goodale MA, Servos P, Mon-Williams M (2004) When two eyes are better than one in prehension: prehension, end-point variance and monocular viewing. Exp Brain Res 158:317–327. doi:10.1007/s00221-004-1905-2

    PubMed  Google Scholar 

  28. Mark LS, Nemeth K, Gardner D, Dainoff MJ, Paasche J, Duffy M, Grandt K (1997) Postural dynamics and the preferred critical boundary for visually guided reaching. J Exp Psychol Hum Percept Perform 23:1365–1379. doi:10.1037/0096-1523.23.5.1365

    PubMed  Article  CAS  Google Scholar 

  29. Marteniuk RG, MacKenzie CL, Jeannnerod M, Athenes S, Dugas C (1987) Constraints on human arm movement trajectories. Can J Psychol 41:365. doi:10.1037/h0084157

    PubMed  Article  CAS  Google Scholar 

  30. Mon-Williams M, Dijkerman HC (1999) The use of vergence information in the programming of prehension. Exp Brain Res 128:578–582. doi:10.1007/s002210050885

    PubMed  Article  CAS  Google Scholar 

  31. Newell KM, Scully DM, Tenenbaum F, Hardiman S (1989) Body scale and the development of prehension. Dev Psychobiol 22:1–13. doi:10.1002/dev.420220102

    PubMed  Article  CAS  Google Scholar 

  32. Oztop E, Arbib MA (2001) A biologically inspired learning to grasp system. Proceedings of the 23rd annual international conference of the IEEE. Eng Med Biol Soc 1:857–860. doi: 10.1109/IEMBS.2001.1019077

  33. Oztop E, Arbib MA (2002) Schema design and implementation of the grasp-related mirror neuron system. Biol Cybern 87:116–140. doi:10.1007/s00422-002-0318-1

    PubMed  Article  Google Scholar 

  34. Paulignan Y, Jeannerod M (1996) Prehension movements: the visuomotor hypothesis revisited. In: Wing AM, Haggard P, Flanagan JR (eds) Hand and brain: the neurophysiology and psychology of hand movements. Academic Press, San Diego

    Google Scholar 

  35. Paulignan Y, Frak VG, Ton I, Jeannerod M (1997) Influence of object position and size on human prehension movements. Exp Brain Res 114:226–234. doi:10.1007/PL00005631

    PubMed  Article  CAS  Google Scholar 

  36. Pedhazur EJ (1982) Multiple regression in behavioral research. Harcourt Brace, Fort Worth

  37. Rand MK, Stelmach GE (2005) Effect of orienting the finger opposition space in the control of reach-to-grasp movements. J Motor Behav 37:65–78. doi:10.3200/JMBR.37.1.65-78

    Article  Google Scholar 

  38. Rosenbaum DA, Meulenbroek RGJ, Vaughan J, Jansen C (1999) Coordination of reaching and grasping by capitalizing on obstacle avoidance and other constraints. Exp Brain Res 128:92–100. doi:10.1007/s002210050823

    PubMed  Article  CAS  Google Scholar 

  39. Rosenbaum DA, Meulenbroek RGJ, Vaughan J, Jansen C (2001) Posture-based motion planning: applications to grasping. Psychol Rev 108:709–734. doi:10.1037//0033-295X.108.4.709

    PubMed  Article  CAS  Google Scholar 

  40. Roy AC, Paulignan Y, Meunier M, Boussaoud D (2002) Prehension movements in the macaque monkey: effects of object size and location. J Neurophysiol 88:1491–1499. doi:10.1007/s00221-005-0133-8

    PubMed  Google Scholar 

  41. Santello M, Soechting JF (1997) Matching object size by controlling finger span and hand shape. Somatosens Motor Res 14:203–212

    Article  CAS  Google Scholar 

  42. Servos P, Goodale MA, Jakobson LS (1992) The role of binocular vision in prehension: a kinematic analysis. Vision Res 32:1513–1521. doi:10.1016/0042-6989(92)90207-Y

    PubMed  Article  CAS  Google Scholar 

  43. Smeets JBJ, Brenner E (1999) A new view on grasping. Mot Control 3:237–271

    CAS  Google Scholar 

  44. Snapp-Childs W, Bingham GP (2009) The affordance of barrier crossing in young children exhibits dynamic, not geometric similarity. Exp Brain Res 198:527–533. doi:10.1007/s00221-09-1944-9

    PubMed  Article  Google Scholar 

  45. Steenbergen B, van der Kamp J (2004) Control of prehension in hemiparetic cerebral palsy: similarities and differences between the ipsi- and contra-lesional sides of the body. Dev Med Child Neurol 46:325–332. doi:10.1017/S0012162204000532

    PubMed  Article  Google Scholar 

  46. Tucker M, Ellis R (1998) On the relations between seen objects and components of potential actions. J Exp Psychol Hum Percept Perform 24:830–846. doi:10.1037//0096-1523.24.3.830

    PubMed  Article  CAS  Google Scholar 

  47. Tucker M, Ellis R (2001) The potentiation of grasp types during visual object categorization. Vis Cogn 8:769–800. doi:10.1080/13506280042000144

    Article  Google Scholar 

  48. Tuller B, Fitch HL, Turvey MT (1982) The Bernstein perspective: II. The concept of muscle linkage or coordinative structure. In: Kelso JAS (ed) Human motor behavior: an introduction. Erlbaum, Hillsdale

    Google Scholar 

  49. Turvey MT, Reed ES, Shaw RE, Mace M (1981) Ecological laws of perceiving and acting: in reply to Fodor and Pylyshyn. Cognition 9:237–304. doi:10.1016/0010-0277(81)900002-0

    PubMed  Article  CAS  Google Scholar 

  50. Van Bergen E, Van Swieten LM, Williams JHG, Mon-Williams M (2007) The effect of orientation on prehension movement time. Exp Brain Res 178:190–193. doi:10.1007/s00221-006-0722-1

    Article  Google Scholar 

  51. Van de Kamp C, Zaal FTJM (2007) Prehension is really reaching and grasping. Exp Brain Res 182:27–34. doi:10.1007/s00221-007-0968-2

    PubMed  Article  Google Scholar 

  52. Warren WH (1984) Perceiving affordances: visual guidance of stair climbing. J Exp Psychol Hum Percept Perform 10:683–703. doi:10.1037//0096-1523.10.5.683

    PubMed  Article  Google Scholar 

  53. Warren W, Whang S (1987) Visual guidance of walking through apertures: body-scaled information for affordances. J Exp Psychol Hum Percept Perform 13(3):371–383. doi:10.1037/0096-1523.13.3.371

    PubMed  Article  Google Scholar 

  54. Whitwell RL, Goodale MA (2009) Updating the programming of a precision grip is a function of recent history of available feedback. Exp Brain Res 194:619–629. doi:10.1007/s00221-009-1737-1

    PubMed  Article  Google Scholar 

  55. Wing AM, Haggard P, Flanagan JR (1996) Hand and brain: the neurophysiology and psychology of hand movements. Academic Press, San Diego

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Geoffrey P. Bingham.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mon-Williams, M., Bingham, G.P. Discovering affordances that determine the spatial structure of reach-to-grasp movements. Exp Brain Res 211, 145–160 (2011). https://doi.org/10.1007/s00221-011-2659-2

Download citation

Keywords

  • Affordances
  • Reach-to-grasp
  • Perception/action
  • Mathematical model