Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis

Abstract

By sensing three-dimensional (3D) head rotation and electrically stimulating the three ampullary branches of a vestibular nerve to encode head angular velocity, a multichannel vestibular prosthesis (MVP) can restore vestibular sensation to individuals disabled by loss of vestibular hair cell function. However, current spread to afferent fibers innervating non-targeted canals and otolith end organs can distort the vestibular nerve activation pattern, causing misalignment between the perceived and actual axis of head rotation. We hypothesized that over time, central neural mechanisms can adapt to correct this misalignment. To test this, we rendered five chinchillas vestibular deficient via bilateral gentamicin treatment and unilaterally implanted them with a head-mounted MVP. Comparison of 3D angular vestibulo-ocular reflex (aVOR) responses during 2 Hz, 50°/s peak horizontal sinusoidal head rotations in darkness on the first, third, and seventh days of continual MVP use revealed that eye responses about the intended axis remained stable (at about 70% of the normal gain) while misalignment improved significantly by the end of 1 week of prosthetic stimulation. A comparable time course of improvement was also observed for head rotations about the other two semicircular canal axes and at every stimulus frequency examined (0.2–5 Hz). In addition, the extent of disconjugacy between the two eyes progressively improved during the same time window. These results indicate that the central nervous system rapidly adapts to multichannel prosthetic vestibular stimulation to markedly improve 3D aVOR alignment within the first week after activation. Similar adaptive improvements are likely to occur in other species, including humans.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Angelaki DE, Hess BJ (1998) Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex. J Neurophysiol 79(2):791–807

    PubMed  CAS  Google Scholar 

  2. Aw ST, Halmagyi GM, Haslwanter T, Curthoys IS, Yavor RA, Todd MJ (1996) Three-dimensional vector analysis of the human vestibuloocular reflex in responseto high-acceleration head rotations. II. responses in subjects with unilateral vestibular loss and selective semicircular canal occlusion. J Neurophysiol 76(6):4021–4030

    PubMed  CAS  Google Scholar 

  3. Baird RA, Desmadryl G, Fernandez C, Goldberg JM (1988) The vestibular nerve of the chinchilla 2. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60:182–203

    PubMed  CAS  Google Scholar 

  4. Baker J, Harrison RE, Isu N, Wickland C, Peterson B (1986) Dynamics of adaptive change in vestibulo-ocular reflex direction. II. Sagittal plane rotations. Brain Res 371(1):166–170

    PubMed  Article  CAS  Google Scholar 

  5. Baker JF, Wickland C, Peterson B (1987) Dependence of cat vestibulo-ocular reflex direction adaptation on animal orientation during adaptation and rotation in darkness. Brain Res 408:339–343

    PubMed  Article  CAS  Google Scholar 

  6. Black FO, Wade SW, Nashner LM (1996) What is the minimal vestibular function required for compensation? Am J Otol 17:401–409

    PubMed  Article  CAS  Google Scholar 

  7. Callan JW, Ebenholtz SM (1982) Directional changes in the vestibular ocular response as a result of adaptation to optical tilt. Vision Res 22:37–42

    PubMed  Article  CAS  Google Scholar 

  8. Chatelin V, Kim EJ, Driscoll C, Larky J, Polite C, Price L, Lalwani AK (2004) Cochlear implant outcomes in the elderly. Otol Neurotol 25(3):298–301

    PubMed  Article  Google Scholar 

  9. Chiang B, Fridman GY, Della Santina CC (2010) Design and performance of a multichannel vestibular prosthesis that restores semicircular canal sensation in macaques. IEEE Trans Neural Systems and Rehab Eng (in press)

  10. Cohen B, Suzuki J, Bender MB (1964) Eye movements from semicircular canal nerve stimulation in cat. Annals Otol Rhin Laryng 73:153–169

    CAS  Google Scholar 

  11. Cremer PD, Minor LB, Carey JP, Della Santina CC (2000) Eye movements in patients with superior canal dehiscence syndrome align with the abnormal canal. Neurology 55(12):1833–1841

    PubMed  CAS  Google Scholar 

  12. Cullen KE (2008) Procedural learning: VOR. In: H. Eichenbaum (ed) Memory systems, vol. 3 of Learning and memory: a comprehensive reference (J.Byrne ed). Elsevier, Oxford, pp. 383–402

  13. Curthoys IS (1987) Eye movements produced by utricular and saccular stimulation. Aviat Space Environ Med 58(9):192–197

    Google Scholar 

  14. Curthoys IS, Halmagyi GM (1995) Vestibular compensation: A review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J Vestib Res 5(2):67–107

    PubMed  Article  CAS  Google Scholar 

  15. Davidovics NS, Fridman GY, Chiang B, Della Santina CC (2010) Effects of biphasic current pulse frequency, amplitude, duration and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve. IEEE Trans Neural Syst Rehab Eng (in press, PubMed PMID: 20813652)

  16. Della Santina CC, Cremer PD, Carey JP, Minor LB (2002) Comparison of head thrust test with head autorotation test reveals that the vestibulo-ocular reflex is enhanced during voluntary head movements. Arch Otol Head Neck Surg. 128(9):1044–1054

    Google Scholar 

  17. Della Santina CC, Migliaccio AA, Patel AH (2005a) Electrical stimulation to restore vestibular function development of a 3-D vestibular prosthesis. Conf Proc IEEE Eng Med Biol Soc 7:7380–7385

    PubMed  Google Scholar 

  18. Della Santina CC, Migliaccio AA, Park HJ, Anderson IW, Jiradejvong P, Minor LB and Carey JP (2005) 3D Vestibuloocular reflex, afferent responses and crista histology in chinchillas after unilateral intratympanic gentamicin. Abstract 813, ARO Midwinter Meeting Proceedings

  19. Della Santina CC, Migliaccio AA, Patel AH (2007) A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-D vestibular sensation. IEEE Trans Biomed Eng 54:1016–1030

    PubMed  Article  Google Scholar 

  20. Della Santina CC, Migliaccio AA, Hayden R, Melvin TA, Fridman GY, Chiang B, Davidovics NS, Dai C, Carey JP, Minor LB, Anderson ICW, Park H, Lyford-Pike S, Tang S (2010) Current and future management of bilateral loss of vestibular sensation–An update on the Johns Hopkins Multichannel Vestibular Prosthesis Project. Cochlear Implants International 11(s2):2–11

    Article  Google Scholar 

  21. du Lac S et al (2010) Signaling and plasticity of vestibular nerve synapses onto functionally distinct vestibular nucleus neurons. Abstract 535 ARO Midwinter Meeting Proceedings

  22. Ebenholtz SM (1966) Adaptation to a rotated visual field as a function of degree of optical tilt and exposure time. J Exp Psychol 72:629–634

    PubMed  Article  CAS  Google Scholar 

  23. Fluur E, Mellström A (1970a) Utricular stimulation and oculomotor reactions. Laryngoscope 80:1701–1712

    PubMed  Article  CAS  Google Scholar 

  24. Fluur E, Mellström A (1970b) Saccular stimulation and oculomotor reactions. Laryngoscope 80:1713–1721

    PubMed  Article  CAS  Google Scholar 

  25. Fluur E, Mellström A (1971) The otolith organs and their influence on oculomotor movements. Exp Neurol 30:139–147

    PubMed  Article  CAS  Google Scholar 

  26. Fridman GY, Davidovics NS, Dai C, Della Santina CC (2010) Vestibulo-ocular reflex responses to a multichannel vestibular prosthesis incorporating a 3D coordinate transformation for correction of misalignment. JARO 11(3):367–381

    PubMed  Article  Google Scholar 

  27. Fukushima K, Fukushima J, Chin S et al (1996) Cross axis vestibulo-ocular reflex induced by pursuit training in alert monkeys. Neurosci Res 25:255–265

    PubMed  Article  CAS  Google Scholar 

  28. Furman JM, Wall C, Kamerer DB (1989) Earth horizontal axis rotational responses in patients with unilateral peripheral vestibular deficits. Ann Otol Rhinol Laryngol 98(7 Pt 1):551–555

    PubMed  CAS  Google Scholar 

  29. Gillespie MB, Minor LB (1999) Prognosis in bilateral vestibular hypofunction. Laryngoscope 109:35–41

    PubMed  Article  CAS  Google Scholar 

  30. Gong WS, Merfeld DM (2000) Prototype neural semicircular canal prosthesis using patterned electrical stimulation. Annals Biomed Eng 28:572–581

    Article  CAS  Google Scholar 

  31. Gong WS, Merfeld DM (2002) System design and performance of a unilateral horizontal semicircular canal prosthesis. IEEE Trans Biomed Eng 49:175–181

    PubMed  Article  Google Scholar 

  32. Goto F, Meng H, Bai R, Sato H, Imagawa M, Sasaki M, Uchino Y (2003) Eye movements evoked by the selective stimulation of the utricular nerve in cats Auris Nasus Larynx 30(4):341–348

    Google Scholar 

  33. Goto F, Meng H, Bai R, Sato H, Imagawa M, Sasaki M, Uchino Y (2004) Eye movements evoked by selective saccular nerve stimulation in cats. Auris Nasus Larynx 31(3):220–225

    PubMed  Article  Google Scholar 

  34. Grunbauer WM, Dieterich M, Brandt T (1998) Bilateral vestibular failure impairs visual motion perception even with the head still. Neuroreport 9(8):1807–1810

    PubMed  Article  CAS  Google Scholar 

  35. Harrison REW, Baker JF, Isu N, Wickland CR, Peterson BW (1986) Dynamics of adaptive change in vestibulo-ocular reflex direction I. Rotations in the horizontal plane. Brain Res 371:162–165

    PubMed  Article  CAS  Google Scholar 

  36. Hirvonen TP, Minor LB, Hullar TE, Carey JP (2005) Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla. J Neurophysiol 93(2):643–655

    PubMed  Article  Google Scholar 

  37. Hullar TE, Williams CD (2006) Geometry of the semicircular canals of the chinchilla (Chinchilla laniger). Hear Res 213(1–2):17–24

    PubMed  Article  Google Scholar 

  38. Hullar TE, Della Santina CC, Hirvonen T, Lasker DM, Carey JP, Minor LB (2005) Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve afferents during high-frequency head rotations. J Neurophysiol 93:2777–2786

    PubMed  Article  Google Scholar 

  39. Lasker DM, Hullar TE, Minor LB (2000) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. III. Responses after labyrinthectomy. J Neurophysiol 83:2482–2496

    PubMed  CAS  Google Scholar 

  40. Leigh RJ, Zee DS (2006) The neurology of eye movements. Oxford University Press, Oxford

    Google Scholar 

  41. Leinfelder PJ, Black NM (1941) Experimental transposition of the extraocular muscles in monkeys. Am J Ophthalmol 24:1115–1120

    Google Scholar 

  42. Lewis RF, Gong WS, Ramsey M, Minor L, Boyle R, Merfeld DM (2002) Vestibular adaptation studied with a prosthetic semicircular canal. J Vestib Res 12:87–94

    PubMed  Google Scholar 

  43. Lewis RF, Haburcakova C, Gong W, Makary C, Merfeld DM (2010) Vestibuloocular reflex adaptation investigated with chronic motion-modulated electrical stimulation of semicircular canal afferents. J Neurophysiol 103(2):1066–1079

    PubMed  Article  Google Scholar 

  44. Mack A, Rock I (1968) A re-examination of the Stratton effect: egocentric adaptation to a rotated visual image. Percept Psychophys 4:57–62

    Article  Google Scholar 

  45. Malinvaud D, Vassias I, Reichenberger I, Rossert C, Straka H (2010) Functional organization of vestibular commissural connections in frog. J Neurosci 30(9):3310–3325

    PubMed  Article  CAS  Google Scholar 

  46. Merfeld DM, Gong WS, Morrissey J, Saginaw M, Haburcakova C, Lewis RF (2006) Acclimation to chronic constant-rate peripheral stimulation provided by a vestibular prosthesis. IEEE Trans Biomed Eng 53(11):2362–2372

    PubMed  Article  Google Scholar 

  47. Merfeld DM, Haburcakova C, Gong W, Lewis RF (2007) Chronic vestibulo-ocular reflexes evoked by a vestibular prosthesis. IEEE Trans Biomed Eng 54(6):1005–1015

    PubMed  Article  Google Scholar 

  48. Migliaccio AA, MacDougall HG, Minor LB, Della Santina CC (2005) Inexpensive system for real-time 3-dimensional video-oculography using a fluorescent marker array. J Neurosci Meth 143(2):141–150

    Article  Google Scholar 

  49. Migliaccio AA, Minor LB, Della Santina CC (2010) Adaptation of the vestibulo-ocular reflex for forward-eyed foveate vision. J Physiol 588(20):3855–3867

    PubMed  Article  CAS  Google Scholar 

  50. Mikaellan H, Held R (1964) Two types of adaptation to an optically-rotated visual field. Am J Psychol 77:257–262

    Article  Google Scholar 

  51. Minor LB (1998) Gentamicin-induced bilateral vestibular hypofunction. JAMA 279:541–544

    PubMed  Article  CAS  Google Scholar 

  52. Morant RB, Beller HK (1965) Adaptation of prismatically rotated visual fields. Science 148:530–531

    PubMed  Article  CAS  Google Scholar 

  53. Peng GC, Baker JF, Peterson BW (1994) Dynamics of directional plasticity in the human vertical vestibulo-ocular reflex. J Vestib Res 4(6):453–460

    PubMed  CAS  Google Scholar 

  54. Sadeghi SG, Minor LB, Cullen KE (2006) Dynamics of the horizontal vestibuloocular reflex after unilateral labyrinthectomy: response to high frequency, high acceleration, and high velocity rotations. Exp Brain Res 175(3):471–484

    PubMed  Article  Google Scholar 

  55. Sadeghi S, Minor LB, Cullen KE (2010) Neural correlates of motor learning: dynamic regulation of multimodal integration in the macaque vestibular system. J Neurosci 30(30):10158–10168

    PubMed  Article  CAS  Google Scholar 

  56. Schubert MC, Della Santina CC, Shelhamer M (2008) Incremental angular vestibulo-ocular reflex adaptation to active head rotation. Exp Brain Res 191(4):435–446

    PubMed  Article  Google Scholar 

  57. Schultheis LW, Robinson DA (1981) Directional plasticity of the vestibulo-ocular reflex in the cat. Ann. NY Acad Sci 374:504–512

    Article  CAS  Google Scholar 

  58. Suzuki JI, Cohen B (1964) Head eye body + limb movements from semicircular canal nerves. Exp Neurology 10:393–405

    Article  CAS  Google Scholar 

  59. Suzuki JI, Goto K, Tokumasu K, Cohen B (1969a) Implantation of electrodes near individual vestibular nerve branches in mammals. Ann Otol Rhinol Laryngol 78(4):815–826

    PubMed  CAS  Google Scholar 

  60. Suzuki JI, Tokumasu K, Goto K (1969b) Eye movements from single utricular nerve stimulation in the cat. Acta Otolaryngol 68(4):350–362

    PubMed  Article  CAS  Google Scholar 

  61. Trillenberg P, Shelhamer M, Roberts DC, Zee DS (2003) Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex. Exp Brain Res 148(2):158–165

    Google Scholar 

Download references

Acknowledgments

We thank Lani Swarthout for assistance with animal care. This work was funded by NIH NIDCD grants R01DC009255, K08DC6216, R01DC2390, and 5F32DC009917. CDS, GYF, and BC are inventors on pending and awarded patents relevant to prosthesis technology, and CDS holds an equity interest in Labyrinth Devices LLC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles C. Della Santina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dai, C., Fridman, G.Y., Chiang, B. et al. Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis. Exp Brain Res 210, 595–606 (2011). https://doi.org/10.1007/s00221-011-2591-5

Download citation

Keywords

  • Vestibular nerve
  • Vestibular prosthesis
  • Vestibular implant
  • Vestibulo-ocular reflex, VOR, labyrinth
  • Bilateral vestibular deficiency
  • Areflexia
  • Adaptation
  • Electrical stimulation