Skip to main content

Prehension of half-full and half-empty glasses: time and history effects on multi-digit coordination

Abstract

We explored how digit forces and indices of digit coordination depend on the history of getting to a particular set of task parameters during static prehension tasks. The participants held in the right hand an instrumented handle with a light-weight container attached on top of the handle. At the beginning of each trial, the container could be empty, filled to the half with water (0.4 l), or filled to the top (0.8 l). The water was pumped in/out of the container at a constant, slow rate over 10 s. At the end of each trial, the participants always held a half-filled container that has just been filled (Empty-Half), emptied (Full-Half) or stayed half-filled throughout the trial (Half-Only). Indices of covariation (synergy indices) of elemental variables (forces and moments of force produced by individual digits) stabilizing such performance variables as total normal force, total tangential force, and total moment of force were computed at two levels of an assumed control hierarchy. At the upper level, the task is shared between the thumb and virtual finger (an imagined digit with the mechanical action equal to that of the four fingers), while at the lower level the action of the virtual finger is shared among the actual four fingers. Filling or emptying the container led to a drop in the safety margin (proportion of grip force over the slipping threshold) below the values observed in the Half-Only condition. Synergy indices at both levels of the hierarchy showed changes over the Full-Half and Empty-Half condition. These changes could be monotonic (typical of moment of force and normal force) or non-monotonic (typical of tangential force). For both normal and tangential forces, higher synergy indices at the higher level of the hierarchy corresponded to lower indices at the lower level. Significant differences in synergy indices across conditions were seen at the final steady state showing that digit coordination during steady holding an object is history dependent. The observations support an earlier hypothesis on a trade-off between synergies at the two levels of a hierarchy. They also suggest that, when a change in task parameters is expected, the neural strategy may involve producing less stable (easier to change) actions. The results suggest that synergy indices may be highly sensitive to changes in a task variable and that effects of such changes persist after the changes are over.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aoki T, Niu X, Latash ML, Zatsiorsky VM (2006) Effects of friction at the digit-object interface on the digit forces in multi-finger prehension. Exp Brain Res 172:425–438

    PubMed  Article  Google Scholar 

  2. Arbib MA, Iberall T, Lyons D (1985) Coordinated control programs for movements of the hand. Exp Brain Res Suppl 10:111–129

    Google Scholar 

  3. Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  4. Bouisset S, Zattara M (1990) Segmental movement as a perturbation to balance? Facts and concepts. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems. Biomechanics and movement organization. Springer, New York, pp 498–506

    Google Scholar 

  5. Cabrera JL, Milton JG (2002) On-off intermittency in a human balancing task. Phys Rev Lett 89:158702

    PubMed  Article  Google Scholar 

  6. Christou EA, Grossman M, Carlton LG (2002) Modeling variability of force during isometric contractions of the quadriceps femoris. J Mot Behav 34:67–81

    PubMed  Article  Google Scholar 

  7. Cluff T, Balasubramaniam R (2009) Motor learning characterized by changing Levy distributions. PloS One 4(6):e5998

    PubMed  Article  Google Scholar 

  8. Creath R, Kiemel T, Horak F, Peterka R, Jeka J (2005) A unified view of quiet and perturbed stance: simultaneous co-existing excitable modes. Neurosci Lett 377:75–80

    PubMed  Article  CAS  Google Scholar 

  9. de Freitas SM, Scholz JP, Stehman AJ (2007) Effect of motor planning on use of motor abundance. Neurosci Lett 417:66–71

    PubMed  Article  Google Scholar 

  10. Flanagan JR, Wing AM (1995) The stability of precision grip forces during cyclic arm movements with a hand-held load. Exp Brain Res 105:455–464

    PubMed  CAS  Google Scholar 

  11. Foo P, Kelso JA, de Guzman GC (2000) Functional stabilization of unstable fixed points: human pole balancing using time-to-balance information. J Exp Psychol Hum Percept Perform 26:1281–1297

    PubMed  Article  CAS  Google Scholar 

  12. Friedman J, SKM V, Zatsiorsky VM, Latash ML (2009) The sources of two components of variance: an example of multifinger cyclic force production tasks at different frequencies. Exp Brain Res 196:263–277

    PubMed  Article  Google Scholar 

  13. Gawthrop P, Loram I, Lakie M (2009) Predictive feedback in human simulated pendulum balancing. Biol Cybern 101:131–146

    PubMed  Article  Google Scholar 

  14. Gelfand IM, Latash ML (1998) On the problem of adequate language in movement science. Mot Control 2:306–313

    CAS  Google Scholar 

  15. Gielen CC, Houk JC, Marcus SL, Miller LE (1984) Viscoelastic properties of the wrist motor servo in man. Ann Biomed Eng 12:599–620

    PubMed  Article  CAS  Google Scholar 

  16. Goodman SR, Shim JK, Zatsiorsky VM, Latash ML (2005) Motor variability within a multi-effector system: experimental and analytical studies of multi-finger production of quick force pulses. Exp Brain Res 163:75–85

    PubMed  Article  Google Scholar 

  17. Gorniak SL, Zatsiorsky VM, Latash ML (2007a) Hierarchies of synergies: an example of two-hand, multifinger tasks. Exp Brain Res 179:167–180

    PubMed  Article  Google Scholar 

  18. Gorniak SL, Zatsiorsky VM, Latash ML (2007b) Emerging and disappearing synergies in a hierarchically controlled system. Exp Brain Res 183:259–270

    PubMed  Article  Google Scholar 

  19. Gorniak SL, Zatsiorsky VM, Latash ML (2009a) Hierarchical control of prehension. I. Biomechanics. Exp Brain Res 193:615–631

    PubMed  Article  Google Scholar 

  20. Gorniak SL, Zatsiorsky VM, Latash ML (2009b) Hierarchical control of prehension. II. Multi-digit synergies. Exp Brain Res 194:1–15

    PubMed  Article  Google Scholar 

  21. Gorniak SL, Feldman AG, Latash ML (2009c) Joint coordination during bimanual transport of real and imaginary objects. Neurosci Lett 456:80–84

    PubMed  Article  CAS  Google Scholar 

  22. Gorniak SL, Zatsiorsky VM, Latash ML (2010) Manipulation of a fragile object. Exp Brain Res 202:413–430

    PubMed  Article  Google Scholar 

  23. Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    PubMed  Article  CAS  Google Scholar 

  24. Jaric S, Russell EM, Collins JJ, Marwaha R (2005) Coordination of hand grip and load forces in uni- and bidirectional static force production tasks. Neurosci Lett 381:51–56

    PubMed  Article  CAS  Google Scholar 

  25. Jaric S, Collins JJ, Marwaha R, Russell E (2006) Interlimb and within limb force coordination in static bimanual manipulation task. Exp Brain Res 168:88–97

    PubMed  Article  Google Scholar 

  26. Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564

    PubMed  Article  CAS  Google Scholar 

  27. Kim SW, Shim JK, Zatsiorsky VM, Latash ML (2006) Anticipatory adjustments of multi-finger synergies in preparation for self-triggered perturbations. Exp Brain Res 174:604–612

    PubMed  Article  Google Scholar 

  28. Kostyukov AI (1998) Muscle hysteresis and movement control: a theoretical study. Neuroscience 83:303–320

    PubMed  Article  CAS  Google Scholar 

  29. Lakie M, Loram ID (2006) Manually controlled human balancing using visual, vestibular and proprioceptive senses involves a common, low frequency neural process. J Physiol 577:403–416

    PubMed  Article  CAS  Google Scholar 

  30. Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14:294–322

    Google Scholar 

  31. Latash ML, Zatsiorsky VM (1993) Joint stiffness: myth or reality? Hum Move Sci 12:653–692

    Article  Google Scholar 

  32. Latash ML, Zatsiorsky VM (2009) Multi-finger prehension: control of a redundant motor system. Adv Exp Med Biol 629:597–618

    PubMed  Article  Google Scholar 

  33. Latash ML, Scholz JF, Danion F, Schöner G (2002a) Finger coordination during discrete and oscillatory force production tasks. Exp Brain Res 146:412–432

    Google Scholar 

  34. Latash ML, Scholz JP, Schöner G (2002b) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30:26–31

    PubMed  Article  Google Scholar 

  35. Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:276–308

    Google Scholar 

  36. Latash ML, Friedman J, Kim SW, Feldman AG, Zatsiorsky VM (2010) Prehension synergies and control with referent hand configurations. Exp Brain Res 202:213–229

    PubMed  Article  Google Scholar 

  37. Loram ID, Gawthrop PJ, Lakie M (2006) The frequency of human, manual adjustments in balancing an inverted pendulum is constrained by intrinsic physiological factors. J Physiol 577:417–432

    PubMed  Article  CAS  Google Scholar 

  38. McIntyre J, Mussa-Ivaldi FA, Bizzi E (1996) The control of stable postures in the multijoint arm. Exp Brain Res 110:248–264

    PubMed  Article  CAS  Google Scholar 

  39. Milton JG, Cabrera JL, Ohira T, Tajima S, Tonosaki Y, Eurich CW, Campbell SA (2009a) The time-delayed inverted pendulum: implications for human balance control. Chaos 19:026110

    PubMed  Article  Google Scholar 

  40. Milton JG, Ohira T, Cabrera JL, Fraiser RM, Gyorffy JB, Ruiz FK, Strauss MA, Balch EC, Marin PJ, Alexander JL (2009b) Balancing with vibration: a prelude for “drift and act” balance control. PLoS One 4:e7427

    PubMed  Article  Google Scholar 

  41. Newell KM, Carlton LG (1993) Force variability in isometric responses. J Exp Psychol Hum Percep Perform 14:37–44

    Article  Google Scholar 

  42. Olafsdottir H, Yoshida N, Zatsiorsky VM, Latash ML (2005) Anticipatory covariation of finger forces during self-paced and reaction time force production. Neurosci Lett 381:92–96

    PubMed  Article  CAS  Google Scholar 

  43. Partridge LD (1965) Modifications of neural output signals by muscles: a frequency response study. J Appl Physiol 20:150–156

    PubMed  CAS  Google Scholar 

  44. Pataky TC, Latash ML, Zatsiorsky VM (2004) Prehension synergies during nonvertical grasping, I: experimental observations. Biol Cybern 91:148–158

    PubMed  Google Scholar 

  45. Savescu AV, Latash ML, Zatsiorsky VM (2008) A technique to determine friction at the fingertips. J Appl Biomech 24:43–50

    PubMed  Google Scholar 

  46. Scholz JP, Schöner G (1999) The uncontrolled manifold concept: Identifying control variables for a functional task. Exp Brain Res 126:289–306

    PubMed  Article  CAS  Google Scholar 

  47. Scholz JP, Schöner G, Latash ML (2000) Identifying the control structure of multijoint coordination during pistol shooting. Exp Brain Res 135:382–404

    PubMed  Article  CAS  Google Scholar 

  48. Scholz JP, Schöner G, Hsu WL, Jeka JJ, Horak F, Martin V (2007) Motor equivalent control of the center of mass in response to support surface perturbations. Exp Brain Res 180:163–179

    PubMed  Article  CAS  Google Scholar 

  49. Shim JK, Latash ML, Zatsiorsky VM (2003) Prehension synergies: trial-to-trial variability and hierarchical organization of stable performance. Exp Brain Res 152:173–184

    PubMed  Article  Google Scholar 

  50. Shim JK, Latash ML, Zatsiorsky VM (2004) Finger coordination during moment production on a mechanically fixed object. Exp Brain Res 157:457–467

    PubMed  Article  Google Scholar 

  51. Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML (2005) The emergence and disappearance of multi-digit synergies during force production tasks. Exp Brain Res 164:260–270

    PubMed  Article  Google Scholar 

  52. Singh T, SKM V, Zatsiorsky VM, Latash ML (2010a) Fatigue and motor redundancy: adaptive increase in force variance in multi-finger tasks. J Neurophysiol 103:2990–3000

    PubMed  Article  Google Scholar 

  53. Singh T, SKM V, Zatsiorsky VM, Latash ML (2010b) Adaptive increase in force variance during fatigue in tasks with low redundancy. Neurosci Lett 485:204–207

    PubMed  Article  CAS  Google Scholar 

  54. SKM V, Zatsiorsky VM, Latash ML (2010) Variance components in discrete force production tasks. Exp Brain Res 205:335–349

    Article  Google Scholar 

  55. Slifkin AB, Newell KM (2000) Variability and noise in continuous force production. J Mot Behav 32:141–150

    PubMed  Article  CAS  Google Scholar 

  56. Winter DA, Prince F, Frank JS, Powell C, Zabjek KF (1996) Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol 75:2334–2343

    PubMed  CAS  Google Scholar 

  57. Woollacott M, Inglin B, Manchester D (1988) Response preparation and posture control. Neuromuscular changes in the older adult. Ann NY Acad Sci 515:42–53

    PubMed  Article  CAS  Google Scholar 

  58. Zatsiorsky VM (2002) Kinetics of human movement. Human Kinetics, Urbana

  59. Zatsiorsky VM, Latash ML (2004) Prehension synergies. Exerc Sport Sci Rev 32:75–80

    PubMed  Article  Google Scholar 

  60. Zatsiorsky VM, Latash ML (2008) Prehension synergies: an overview. J Mot Behav 40:446–476

    PubMed  Article  Google Scholar 

  61. Zatsiorsky VM, Gregory RW, Latash ML (2002) Force and torque production in static multi-finger prehension: biomechanics and control. Part I. Biomechanics. Biol Cybern 87:50–57

    PubMed  Article  Google Scholar 

  62. Zatsiorsky VM, Latash ML, Gao F, Shim JK (2004) The principle of superposition in human prehension. Robotica 22:231–234

    PubMed  Article  Google Scholar 

  63. Zatsiorsky VM, Gao F, Latash ML (2005) Motor control goes beyond physics: differential effects of gravity and inertia on finger forces during manipulation of hand-held objects. Exp Brain Res 162:300–308

    PubMed  Article  Google Scholar 

  64. Zhang W, Scholz JP, Zatsiorsky VM, Latash ML (2008) What do synergies do? Effects of secondary constraints on multi-digit synergies in accurate force-production tasks. J Neurophysiol 99:500–513

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Varadhan Srinivasan Kariyamaanikam (SKM) for his help during the early stages of this project. The study was in part supported by grants AG-018751, NS-035032, and AR-048563 from the National Institutes of Health, USA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark L. Latash.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, Y., Zatsiorsky, V.M. & Latash, M.L. Prehension of half-full and half-empty glasses: time and history effects on multi-digit coordination. Exp Brain Res 209, 571–585 (2011). https://doi.org/10.1007/s00221-011-2590-6

Download citation

Keywords

  • Prehension
  • Safety margin
  • Synergy
  • History effects