Skip to main content
Log in

Intrinsic membrane properties of central vestibular neurons in rodents

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Numerous studies in rodents have shown that the functional efficacy of several neurotransmitter receptors and the intrinsic membrane excitability of central vestibular neurons, as well as the organization of synaptic connections within and between vestibular nuclei can be modified during postnatal development, after a lesion of peripheral vestibular organs or in vestibular-deficient mutant animals. This review mainly focuses on the intrinsic membrane properties of neurons of the medial vestibular nuclei of rodents, their postnatal maturation, and changes following experimental or congenital alterations in vestibular inputs. It also presents the concomitant modifications in the distribution of these neurons into different neuron types, which has been based on their membrane properties in relation to their anatomical, biochemical, or functional properties. The main points discussed in this review are that (1) the intrinsic membrane properties can be used to distinguish between two dominant types of neurons, (2) the system remains plastic throughout the whole life of the animal, and finally, (3) the intracellular calcium concentration has a major effect on the intrinsic membrane properties of central vestibular neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Ann Rev Neurosci 31:125–150

    Article  PubMed  CAS  Google Scholar 

  • Av-Ron E, Vidal P-P (1999) Intrinsic membrane properties and dynamics of medial vestibular neurons: a simulation. Biol Cybern 80:383–392

    Article  PubMed  CAS  Google Scholar 

  • Babalian AL, Vidal P-P (2000) Floccular modulation of vestibuloocular pathways and cerebellum-related plasticity: an in vitro whole brain study. J Neurophysiol 84:2514–2528

    PubMed  CAS  Google Scholar 

  • Babalian A, Vibert N, Assie G, Serafin M, Mühlethaler M, Vidal P-P (1997) Central vestibular networks in the guinea-pig: functional characterization in the isolated whole brain in vitro. Neuroscience 81:405–426

    Article  PubMed  CAS  Google Scholar 

  • Bagnall MW, Stevens RJ, du Lac S (2007) Transgenic mouse lines subdivide medial vestibular nucleus neurons into discrete, neurochemically distinct populations. J Neurosci 27:2318–2330

    Article  PubMed  CAS  Google Scholar 

  • Bagnall MW, McElvain LE, Faulstich M, du Lac S (2008) Frequency-independent synaptic transmission supports a linear vestibular behavior. Neuron 60:343–352

    Article  PubMed  CAS  Google Scholar 

  • Baker R, Evinger C, McCrea RA (1981) Some thoughts about the three neurons in the vestibular ocular reflex. Ann N Y Acad Sci 374:171–188

    Article  PubMed  CAS  Google Scholar 

  • Ban J-H, Chang J, Im GJ, Jung HH (2009) Proteomic analysis of the rat vestibular nucleus complex following unilateral labyrinthectomy. Acta Oto-laryngol 129:846–854

    Article  CAS  Google Scholar 

  • Beraneck M, Cullen KE (2007) Activity of vestibular nuclei neurons during vestibular and optokinetic stimulation in the alert mouse. J Neurophysiol 98:1549–1565

    Article  PubMed  CAS  Google Scholar 

  • Beraneck M, Straka H (2011) Vestibular signal processing by separate sets of neuronal filters. J Vest Res (in press)

  • Beraneck M, Hachemaoui M, Idoux E, Ris L, Uno A, Godaux E, Vidal P-P, Moore LE, Vibert N (2003) Long-term plasticity of ipsilesional medial vestibular nucleus neurons after unilateral labyrinthectomy. J Neurophysiol 90:184–203

    Article  PubMed  Google Scholar 

  • Beraneck M, Idoux E, Uno A, Vidal P-P, Moore LE, Vibert N (2004) Unilateral labyrinthectomy modifies the membrane properties of contralesional vestibular neurons. J Neurophysiol 92:1668–1684

    Article  PubMed  Google Scholar 

  • Broussard D (2009) Dynamics of glutamatergic synapses in the medial vestibular nucleus of the mouse. Eur J Neurosci 29:502–517

    Article  PubMed  Google Scholar 

  • Camp AJ, Callister RJ, Brichta AM (2006) Inhibitory synaptic transmission differs in mouse type A and B medial vestibular nucleus neurons, in vitro. J Neurophysiol 95:3208–3218

    Google Scholar 

  • Camp AJ, Lim R, Anderson WB, Schofield PR, Callister RJ, Brichta AM (2010) Attenuated glycine receptor function reduces excitability of mouse medial vestibular nucleus neurons. Neuroscience 170:348–360

    Article  PubMed  CAS  Google Scholar 

  • Cingolani LA, Gymnopoulos M, Boccaccio A, Stocker M, Pedarzani P (2002) Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons. J Neurosci 22:4456–4467

    PubMed  CAS  Google Scholar 

  • De Waele C, Serafin M, Khateb A, Yabe T, Vidal P-P, Mühlethaler M (1993) Medial vestibular nucleus in the guinea-pig: apamin-induced rhythmic burst firing—an in vitro and in vivo study. Exp Brain Res 95:213–222

    Article  PubMed  Google Scholar 

  • Dorval AD Jr, White JA (2005) Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J Neurosci 25:10025–10028

    Article  PubMed  CAS  Google Scholar 

  • du Lac S, Lisberger SG (1995) Membrane and firing properties of avian medial vestibular nucleus neurons in vitro. J Comp Physiol [A] 176:641–651

    Article  CAS  Google Scholar 

  • Dutia MB, Johnston AR (1998) Development of action potentials and apamin-sensitive after-potentials in mouse vestibular nucleus neurones. Exp Brain Res 118:148–154

    Article  PubMed  CAS  Google Scholar 

  • Eugène D, Deforges S, Guimont F, Idoux E, Vidal P-P, Moore LE, Vibert N (2007) Developmental regulation of the membrane properties of central vestibular neurons by sensory vestibular information in the mouse. J Physiol 583:923–943

    Article  PubMed  Google Scholar 

  • Eugène D, Deforges S, Vibert N, Vidal P-P (2009) Vestibular critical period, maturation of central vestibular neurons, and locomotor control. Ann NY Acad Sci 1164:180–187

    Article  PubMed  Google Scholar 

  • Gall D, Roussel C, Susa I, D’Angelo E, Rossi P, Bearzatto B, Galas MC, Blum D, Schurmans S, Schiffmann SN (2003) Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci 23:9320–9327

    PubMed  CAS  Google Scholar 

  • Gallagher JP, Lewis MR, Shinnick-Gallagher P (1985) An electrophysiological investigation of the rat medial vestibular nucleus in vitro. In: Correia MJ, Perachio AA (eds) Progress in clinical and biological research, vol 176. Alan R. Liss, New York, pp 293–304

    Google Scholar 

  • Gittis AH, du Lac S (2007) Firing properties of GABAergic versus non-GABAergic vestibular nucleus neurons conferred by a differential balance of potassium currents. J Neurophysiol 97:3986–3996

    Article  PubMed  CAS  Google Scholar 

  • Gittis AH, du Lac S (2008) Similar properties of transient, persistent, and resurgent Na currents in GABAergic and non-GABAergic vestibular nucleus neurons. J Neurophysiol 99:2060–2065

    Article  PubMed  Google Scholar 

  • Gittis AH, Moghadam SH, du Lac S (2010) Mechanisms of sustained high firing rates in two classes of vestibular nucleus neurons: differential contributions of resurgent Na, Kv3, and BK currents. J Neurophysiol 104:1625–1634

    Article  PubMed  CAS  Google Scholar 

  • Grassi S, Pettorossi VE (2001) Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices. Prog Neurobiol 64:527–553

    Article  PubMed  CAS  Google Scholar 

  • Grassi S, Dieni C, Frondaroli A, Pettorossi VE (2004) Influence of visual experience on developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei. J Physiol 560:767–777

    Article  PubMed  CAS  Google Scholar 

  • Grassi S, Frondaroli A, Dieni C, Dutia MB, Pettorossi VE (2007) Neurosteroid modulation of neuronal excitability and synaptic transmission in the rat medial vestibular nuclei. Eur J Neurosci 26:23–32

    Article  PubMed  Google Scholar 

  • Grassi S, Frondaroli A, Dieni C, Scarduzio M, Pettorossi VE (2009a) Long-term potentiation in the rat medial vestibular nuclei depends on locally synthesized 17{beta}-estradiol. J Neurosci 29:10779–10783

    Article  PubMed  CAS  Google Scholar 

  • Grassi S, Frondaroli A, Scarduzio M, Dutia MB, Dieni C, Pettorossi VE (2009b) Effects of 17[beta]-estradiol on glutamate synaptic transmission and neuronal excitability in the rat medial vestibular nuclei. Neuroscience 165:1100–1114

    Article  PubMed  Google Scholar 

  • Haj-Dahmane S, Andrade R (1997) Calcium-activated cation nonselective current contributes to the fast afterdepolarization in rat prefrontal cortex neurons. J Neurophysiol 78:1983–1989

    PubMed  CAS  Google Scholar 

  • Highstein SM, Holstein GR (2006) The anatomy of the vestibular nuclei. Prog Brain Res 151:157–203

    Article  PubMed  CAS  Google Scholar 

  • Him A, Dutia MB (2001) Intrinsic excitability changes in vestibular nucleus neurons after unilateral deafferentation. Brain Res 908:58–66

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  • Horii A, Masumura C, Smith PF, Darlington CL, Kitahara T, Uno A, Mitani K, Kubo T (2004) Microarray analysis of gene expression in the rat vestibular nucleus complex following unilateral vestibular deafferentation. J Neurochem 91:975–982

    Article  PubMed  CAS  Google Scholar 

  • Hospedales TM, van Rossum MC, Graham BP, Dutia MB (2008) Implications of noise and neural heterogeneity for vestibulo-ocular reflex fidelity. Neural Comput 20:756–778

    Article  PubMed  Google Scholar 

  • Idoux E, Serafin M, Fort P, Vidal P-P, Beraneck M, Vibert N, Muhlethaler M, Moore LE (2006) Oscillatory and intrinsic membrane properties of guinea pig nucleus prepositus hypoglossi neurons in vitro. J Neurophysiol 96:175–196

    Article  PubMed  Google Scholar 

  • Idoux E, Eugène D, Chambaz A, Magnani C, White JA, Moore LE (2008) Control of neuronal persistent activity by voltage-dependent dendritic properties. J Neurophysiol 100:1278–1286

    Article  PubMed  Google Scholar 

  • Jeong HS, Lim YC, Kim TS, Heo T, Jung SM, Cho YB, Jun JY, Park JS (2003) Excitatory effects of 5-hydroxytryptamine on the medial vestibular nuclear neuron via the 5-HT2 receptor. Neuroreport 14:2001–2004

    Article  PubMed  CAS  Google Scholar 

  • Jerng HH, Pfaffinger PJ, Covarrubias M (2004) Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci 27:343–369

    Article  PubMed  CAS  Google Scholar 

  • Johnston AR, Dutia MB (1996) Postnatal development of spontaneous tonic activity in mouse medial vestibular nucleus neurones. Neurosci Lett 219:17–20

    Article  PubMed  CAS  Google Scholar 

  • Johnston AR, MacLeod NK, Dutia MB (1994) Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurones. J Physiol 481:61–77

    PubMed  CAS  Google Scholar 

  • Kaufman GD, Shinder ME, Perachio AA (2000) Convergent properties of vestibular-related brain stem neurons in the gerbil. J Neurophysiol 83:1958–1971

    PubMed  CAS  Google Scholar 

  • Koulakov AA, Raghavachari S, Kepecs A, Lisman JE (2002) Model for a robust neural integrator. Nat Neurosci 5:775–782

    Article  PubMed  CAS  Google Scholar 

  • Li W-C, Soffe SR, Roberts A (2004) A direct comparison of whole cell patch and sharp electrodes by simultaneous recording from single spinal neurons in frog tadpoles. J Neurophysiol 92:380–386

    Article  PubMed  Google Scholar 

  • Lin Y, Carpenter DO (1993) Medial vestibular neurons are endogenous pacemakers whose discharge is modulated by neurotransmitters. Cell Mol Neurobiol 13:601–613

    Article  PubMed  CAS  Google Scholar 

  • Magnani C, Moore LE (2010) Quadratic sinusoidal analysis of neurons in voltage clamp. http://www.arxiv.org/abs/1007.0858

  • Masumura C, Horii A, Mitani K, Kitahara T, Uno A, Kubo T (2007) Unilateral vestibular deafferentation-induced changes in calcium signaling-related molecules in the rat vestibular nuclear complex. Brain Res 1138:129–135

    Article  PubMed  CAS  Google Scholar 

  • McCrea RA, Horn AKE (2006) Nucleus prepositus. Prog Brain Res 151:205–230

    Article  PubMed  CAS  Google Scholar 

  • Menzies JRW, Porrill J, Dutia M, Dean P (2010) Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation. PLoS ONE 5:e13182

    Article  PubMed  Google Scholar 

  • Minor LB, Lasker DM, Backous DD, Hullar TE (1999) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal Responses. J Neurophysiol 82:1254–1270

    PubMed  CAS  Google Scholar 

  • Moore LE, Hachemaoui M, Idoux E, Vibert N, Vidal P-P (2004) The linear and non-linear relationships between action potential discharge rates and membrane potential in model vestibular neurons. Nonlinear Studies 11:423–447

    Google Scholar 

  • Murphy GJ, Du Lac S (2001) Postnatal development of spike generation in rat medial vestibular nucleus neurons. J Neurophysiol 85:1899–1906

    PubMed  CAS  Google Scholar 

  • Nelson AB, Krispel CM, Sekirnjak C, du Lac S (2003) Long-lasting increases in intrinsic excitability triggered by inhibition. Neuron 40:609–620

    Article  PubMed  CAS  Google Scholar 

  • Nelson AB, Gittis AH, du Lac S (2005) Decreases in CaMKII activity trigger persistent potentiation of intrinsic excitability in spontaneously firing vestibular nucleus neurons. Neuron 46:623–631

    Article  PubMed  CAS  Google Scholar 

  • Park J-S, Jeong H-S (2000) Effects of nitric oxide on the vestibular functional recovery after unilateral labyrinthectomy. Jap J Pharmacol 84:425–430

    Article  PubMed  CAS  Google Scholar 

  • Pessia M, Servettini I, Panichi R, Guasti L, Grassi S, Arcangeli A, Wanke E, Pettorossi VE (2008) ERG voltage-gated K+ channels regulate excitability and discharge dynamics of the medial vestibular nucleus neurones. J Physiol 586:4877–4890

    Article  PubMed  CAS  Google Scholar 

  • Pfanzelt S, Rössert C, Rohregger M, Glasauer S, Moore LE, Straka H (2008) Differential dynamic processing of afferent signals in frog tonic and phasic second-order vestibular neurons. J Neurosci 28:10349–10362

    Article  PubMed  CAS  Google Scholar 

  • Puyal J, Devau G, Venteo S, Sans N, Raymond J (2002) Calcium-binding proteins map the postnatal development of rat vestibular nuclei and their vestibular and cerebellar projections. J Comp Neurol 451:374–391

    Article  PubMed  CAS  Google Scholar 

  • Puyal J, Grassi S, Dieni C, Frondaroli A, Dememes D, Raymond J, Pettorossi VE (2003) Developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei: role of group I metabotropic glutamate receptors. J Physiol 553:427–443

    Article  PubMed  CAS  Google Scholar 

  • Quadroni R, Knopfel T (1994) Compartmental models of type A and type B guinea pig medial vestibular neurons. J Neurophysiol 72:1911–1924

    PubMed  CAS  Google Scholar 

  • Ris L, de Waele C, Serafin M, Vidal P-P, Godaux E (1995) Neuronal activity in the ipsilateral vestibular nucleus following unilateral labyrinthectomy in the alert guinea pig. J Neurophysiol 74:2087–2099

    PubMed  CAS  Google Scholar 

  • Ris L, Hachemaoui M, Vibert N, Godaux E, Vidal P-P, Moore LE (2001) Resonance of spike discharge modulation in neurons of the guinea pig medial vestibular nucleus. J Neurophysiol 86:703–716

    PubMed  CAS  Google Scholar 

  • Ris L, Hachemaoui M, Godaux E (2002) Effect of labyrinthectomy on the spike generator of vestibular neurons in the guinea pig. Neuroreport 13:1875–1879

    Article  PubMed  Google Scholar 

  • Ris L, Capron B, Nonclercq D, Alexandre H, Sindic C, Toubeau G, Godaux E (2003) Labyrinthectomy changes T-type calcium channels in vestibular neurones of the guinea pig. Neuroreport 14:1585–1589

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Ozawa S (2007) Membrane properties of rat medial vestibular nucleus neurons in vivo. Neurosci Res 59:215–223

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Takazawa T, Ozawa S (2008) Relationship between afterhyperpolarization profiles and the regularity of spontaneous firings in rat medial vestibular nucleus neurons. Eur J Neurosci 28:288–298

    Article  PubMed  Google Scholar 

  • Sans N, Moniot B, Raymond J (1995) Distribution of calretinin mRNA in the vestibular nuclei of rat and guinea pig and the effects of unilateral labyrinthectomy: a non-radioactive in situ hybridization study. Brain Res Mol Brain Res 28:1–11

    Article  PubMed  CAS  Google Scholar 

  • Schwaller B, Meyer M, Schiffmann S (2002) ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28 k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1:241–258

    Article  PubMed  CAS  Google Scholar 

  • Sekirnjak C, du Lac S (2002) Intrinsic firing dynamics of vestibular nucleus neurons. J Neurosci 22:2083–2095

    PubMed  CAS  Google Scholar 

  • Sekirnjak C, du Lac S (2006) Physiological and anatomical properties of mouse medial vestibular nucleus neurons projecting to the oculomotor nucleus. J Neurophysiol 95:3012–3023

    Article  PubMed  Google Scholar 

  • Sekirnjak C, Vissel B, Bollinger J, Faulstich M, du Lac S (2003) Purkinje cell synapses target physiologically unique brainstem neurons. J Neurosci 23:6392–6398

    PubMed  CAS  Google Scholar 

  • Serafin M, de Waele C, Khateb A, Vidal PP, Muhlethaler M (1991a) Medial vestibular nucleus in the guinea-pig. I. Intrinsic membrane properties in brainstem slices. Exp Brain Res 84:417–425

    Article  PubMed  CAS  Google Scholar 

  • Serafin M, de Waele C, Khateb A, Vidal PP, Muhlethaler M (1991b) Medial vestibular nucleus in the guinea-pig. II. Ionic basis of the intrinsic membrane properties in brainstem slices. Exp Brain Res 84:426–433

    Article  PubMed  CAS  Google Scholar 

  • Shin M, du Lac S (2010) Cerebellar influence on microcircuits in vestibular nucleus. Program 677.9, Society for Neuroscience, San Diego

  • Shino M, Ozawa S, Furuya N, Saito Y (2008) Membrane properties of excitatory and inhibitory neurons in the rat prepositus hypoglossi nucleus. Eur J Neurosci 27:2413–2424

    Article  PubMed  Google Scholar 

  • Smith MR, Nelson AB, Du Lac S (2002) Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. J Neurophysiol 87:2031–2042

    PubMed  Google Scholar 

  • Straka H, Vibert N, Vidal P-P, Moore LE, Dutia MB (2005) Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity. Prog Neurobiol 76:349–392

    Article  PubMed  CAS  Google Scholar 

  • Straka H, Lambert FM, Pfanzelt S, Beraneck M (2009) Vestibulo-ocular signal transformation in frequency-tuned channels. Ann N Y Acad Sci 1164:37–44

    Article  PubMed  Google Scholar 

  • Szatanik M, Vibert N, Vassias I, Guénet J-L, Eugène D, de Waele C, Jaubert J (2008) Behavioral effects of a deletion in Kcnn2, the gene encoding the SK2 subunit of small-conductance Ca2+-activated K+ channels. Neurogenetics 9:237–248

    Article  PubMed  CAS  Google Scholar 

  • Takazawa T, Saito Y, Tsuzuki K, Ozawa S (2004) Membrane and firing properties of glutamatergic and GABAergic neurons in the rat medial vestibular nucleus. J Neurophysiol 92:3106–3120

    Article  PubMed  CAS  Google Scholar 

  • Uno A, Idoux E, Beraneck M, Vidal P-P, Moore LE, Wilson VJ, Vibert N (2003) Static and dynamic membrane properties of lateral vestibular nucleus neurons in guinea pig brain stem slices. J Neurophysiol 90:1689–1703

    Article  PubMed  CAS  Google Scholar 

  • Vacher H, Diochot S, Bougis PE, Martin-Eauclaire M-F, Mourre C (2006) Kv4 channels sensitive to BmTX3 in rat nervous system: autoradiographic analysis of their distribution during brain ontogenesis. Eur J Neurosci 24:1325–1340

    Article  PubMed  Google Scholar 

  • Vassias I, Patko T, Vidal P-P, de Waele C (2003) Modulation of the beta1–3 voltage-gated sodium channels in rat vestibular and facial nuclei after unilateral labyrinthectomy and facial nerve section: an in situ hybridization study. Brain Res Mol Brain Res 120:73–78

    Article  PubMed  CAS  Google Scholar 

  • Vervaeke K, Hu H, Graham LJ, Storm JF (2006) Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron 49:257–270

    Article  PubMed  CAS  Google Scholar 

  • Vibert N, Bantikyan A, Babalian A, Serafin M, Mühlethaler M, Vidal P-P (1999) Post-lesional plasticity in the central nervous system of the guinea-pig: a “top-down” adaptation process? Neuroscience 94:1–5

    Article  PubMed  CAS  Google Scholar 

  • Vidal P-P, Degallaix L, Josset P, Gasc J-P, Cullen KE (2004) Postural and locomotor control in normal and vestibularly deficient mice. J Physiol 559:625–638

    Article  PubMed  CAS  Google Scholar 

  • Yuan L-L, Chen X (2006) Diversity of potassium channels in neuronal dendrites. Prog Neurobiol 78:374–389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Centre National de la Recherche Scientifique (CNRS), Université Paris Descartes, and the Centre National d’Études Spatiales (CNES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Paul Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eugène, D., Idoux, E., Beraneck, M. et al. Intrinsic membrane properties of central vestibular neurons in rodents. Exp Brain Res 210, 423–436 (2011). https://doi.org/10.1007/s00221-011-2569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2569-3

Keywords

Navigation