Advertisement

Experimental Brain Research

, Volume 205, Issue 4, pp 489–495 | Cite as

Competitive effects on steady-state visual evoked potentials with frequencies in- and outside the alpha band

  • Christian Keitel
  • Søren K. Andersen
  • Matthias M. MüllerEmail author
Research Article

Abstract

Multiple concurrently presented stimuli are thought to compete for neuronal processing resources. Such competitive stimulus interactions can be investigated by “frequency tagging” each stimulus with an individual temporal frequency. In this case, all stimuli will drive distinct steady-state visual evoked potentials (SSVEPs), hence allowing for an assessment of the distribution of processing resources. Here, we investigated whether competitive effects on SSVEP amplitudes are dependent upon the choice of tagging frequency of either the driving stimulus or a close-by competing stimulus. In particular, we were interested whether changes in amplitude are specific to a 10-Hz SSVEP, as it has been suggested that tagging frequencies within the alpha band drive uniquely characterized neural networks. If this was the case, an additional competition might be introduced when two stimuli are tagged with frequencies within the alpha band and thus compete for processing resources in similar networks. Additionally, we tested whether effects on SSVEP amplitude differ when the competing stimulus is tagged with a frequency of 12 Hz that produces a perceptible flicker when compared to an imperceptible 60-Hz flicker. We found a significant decrease in amplitude of 10- and 15-Hz SSVEPs upon presentation of the competing stimulus regardless of its tagging frequency. Our results clearly indicate that an SSVEP with a frequency within the alpha band and a 15-Hz SSVEP show similar sensitivity to effects of competition. Furthermore, the observed effects of competition on SSVEP amplitude occur independently of flicker perceptibility.

Keywords

Steady-state visual evoked potential (SSVEP) Frequency tagging Human EEG Alpha rhythm Biased competition 

Notes

Acknowledgments

We thank Renate Zahn for help in data recording and Cliodhna Quigley for comments on the manuscript. Stimulation was realized using Cogent Graphics developed by John Romaya at the LON at the Wellcome Department of Imaging Neuroscience. Work was supported by the Deutsche Forschungsgemeinschaft, graduate program „Function of Attention in Cognition“.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Andersen SK, Hillyard SA, Müller MM (2008) Attention facilitates multiple stimulus features in parallel in human visual cortex. Curr Biol 18(13):1006–1009CrossRefPubMedGoogle Scholar
  2. Andersen SK, Müller MM, Hillyard SA (2009a) Color-selective attention need not be mediated by spatial attention. J Vis 9(6):21–27CrossRefGoogle Scholar
  3. Andersen SK, Fuchs S, Müller MM (2009b) Effects of Feature-selective and Spatial Attention at Different Stages of Visual Processing. J Cogn Neurosci doi: 10.1162/jocn.2009.21328
  4. Beck DM, Kastner S (2009) Top-down and bottom-up mechanisms in biasing competition in the human brain. Vision Res 49(10):1154–1165CrossRefPubMedGoogle Scholar
  5. Bendat JS, Piersol AG (2001) Random data: analysis and measurement procedures, 3rd edn. Wiley, New YorkGoogle Scholar
  6. Burkitt GR, Silberstein RB, Cadusch PJ, Wood AW (2000) Steady-state visual evoked potentials and travelling waves. Clin Neurophysiol 111(2):246–258CrossRefPubMedGoogle Scholar
  7. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21CrossRefPubMedGoogle Scholar
  8. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222CrossRefPubMedGoogle Scholar
  9. Ding J, Sperling G, Srinivasan R (2006) Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency. Cereb Cortex 16(7):1016–1029CrossRefPubMedGoogle Scholar
  10. Ellis KA, Silberstein RB, Nathan PJ (2006) Exploring the temporal dynamics of the spatial working memory n-back task using steady state visual evoked potentials (SSVEP). NeuroImage 31(4):1741–1751CrossRefPubMedGoogle Scholar
  11. Fuchs S, Andersen SK, Gruber T, Müller MM (2008) Attentional bias of competitive interactions in neuronal networks of early visual processing in the human brain. NeuroImage 41(3):1086–1101CrossRefPubMedGoogle Scholar
  12. Junghöfer M, Elbert T, Tucker DM, Rockstroh B (2000) Statistical control of artifacts in dense array EEG/MEG studies. Psychophysiology 37(4):523–532CrossRefPubMedGoogle Scholar
  13. Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341CrossRefPubMedGoogle Scholar
  14. Kastner S, Weerd PD, Pinsk MA, Elizondo MI, Desimone R, Ungerleider LG (2001) Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. J Neurophysiol 86(3):1398–1411PubMedGoogle Scholar
  15. Keil A, Moratti S, Sabatinelli D, Bradley MM, Lang PJ (2005) Additive effects of emotional content and spatial selective attention on electrocortical facilitation. Cereb Cortex 15(8):1187–1197CrossRefPubMedGoogle Scholar
  16. Malinowski P, Fuchs S, Müller MM (2007) Sustained division of spatial attention to multiple locations within one hemifield. Neurosci Lett 414:65–70CrossRefPubMedGoogle Scholar
  17. Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229(4715):782–784CrossRefPubMedGoogle Scholar
  18. Morgan ST, Hansen JC, Hillyard SA (1996) Selective attention to stimulus location modulates the steady-state visual evoked potential. Proc Natl Acad Sci USA 93(10):4770–4774CrossRefPubMedGoogle Scholar
  19. Müller MM, Picton TW, Valdes-Sosa P, Riera J, Teder-Sälejärvi WA, Hillyard SA (1998) Effects of spatial selective attention on the steady-state visual evoked potential in the 20–28 Hz range. Brain Res Cogn Brain Res 6(4):249–261CrossRefPubMedGoogle Scholar
  20. Müller MM, Malinowski P, Gruber T, Hillyard SA (2003) Sustained division of the attentional spotlight. Nature 424(6946):309–312CrossRefPubMedGoogle Scholar
  21. Müller MM, Andersen SK, Keil A (2008) Time course of competition for visual processing resources between emotional pictures and foreground task. Cereb Cortex 18(8):1892–1899CrossRefPubMedGoogle Scholar
  22. Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10(9):424–430CrossRefPubMedGoogle Scholar
  23. Nunez PL, Wingeier BM, Silberstein RB (2001) Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp 13(3):125–164CrossRefPubMedGoogle Scholar
  24. O’Craven KM, Downing PE, Kanwisher N (1999) fMRI evidence for objects as the units of attentional selection. Nature 401(6753):584–587CrossRefPubMedGoogle Scholar
  25. Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New YorkGoogle Scholar
  26. Reynolds JH, Chelazzi L (2004) Attentional modulation of visual processing. Annu Rev Neurosci 27:611–647CrossRefPubMedGoogle Scholar
  27. Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci 19(5):1736–1753PubMedGoogle Scholar
  28. Serences JT, Yantis S (2006) Selective visual attention and perceptual coherence. Trends Cogn Sci 10:38–45CrossRefPubMedGoogle Scholar
  29. Silberstein RB (1995a) Steady-state visually evoked potentials, brain resonances, and cognitive processes. In: Nunez PL (ed) Neocortical dynamics and human EEG rhythms. Oxford University Press, Oxford, pp 272–303Google Scholar
  30. Silberstein RB (1995b) Neuromodulation of neocortical dynamics. In: Nunez PL (ed) Neocortical dynamics and human EEG rhythms. Oxford University Press, Oxford, pp 591–627Google Scholar
  31. Silberstein RB, Ciorciari J, Pipingas A (1995) Steady-state visually evoked potential topography during the Wisconsin card sorting test. Electroencephalogr Clin Neurophysiol 96(1):24–35CrossRefPubMedGoogle Scholar
  32. Silberstein RB, Nunez PL, Pipingas A, Harris P, Danieli F (2001) Steady state visually evoked potential (SSVEP) topography in a graded working memory task. Int J Psychophysiol 42(2):219–232CrossRefPubMedGoogle Scholar
  33. Toffanin P, de Jong R, Johnson A, Martens S (2009) Using frequency tagging to quantify attentional deployment in a visual divided attention task. Int J Psychophysiol 72(3):289–298CrossRefPubMedGoogle Scholar
  34. Wickens TD (2002) Elementary signal detection theory. Oxford University Press, OxfordGoogle Scholar
  35. Zemon V, Ratliff F (1982) Visual evoked potentials: evidence for lateral interactions. Proc Nat Acad Sci USA 79:5723–5726CrossRefPubMedGoogle Scholar
  36. Zemon V, Ratliff F (1984) Intermodulation components of the visual evoked potential: responses to lateral and superimposed stimuli. Biol Cybern 50:401–408CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Christian Keitel
    • 1
  • Søren K. Andersen
    • 1
  • Matthias M. Müller
    • 1
    Email author
  1. 1.Institut für Psychologie IUniversität LeipzigLeipzigGermany

Personalised recommendations