Skip to main content
Log in

Resonance phenomena in the human auditory cortex: individual resonance frequencies of the cerebral cortex determine electrophysiological responses

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The brain can be considered a dynamical system which is able to oscillate at multiple frequencies. To study the brain’s preferred oscillation frequencies, the resonance frequencies in the frequency response of the system can be assessed by stimulating the brain at various stimulation frequencies. Furthermore, the event-related potential (ERP) can be considered as the brain’s impulse response. For linear dynamical systems, the frequency response should be equivalent to the frequency transform of the impulse response. The present study test whether this fundamental relation is also true for the frequency transform of the ERP and the frequency response of the brain. Results show that the spectral characteristics of both impulse and frequency response in the gamma frequency range are significantly correlated. Thus, we speculate that the resonance frequencies determine the frequency spectrum of the impulse response. This, in turn, implies that both measures are determined by the same, individually specific, neuronal generator mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allport GW (1927) Concepts of trait and personality. Psychol Bull 24:284–293

    Article  Google Scholar 

  • Basar E (1980) EEG-brain dynamics: relation between EEG and brain evoked potentials. Elsevier, Amsterdam

    Google Scholar 

  • Basar E, Basar-Eroglu C, Karakas S, Schurmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248

    Article  CAS  PubMed  Google Scholar 

  • Basar-Eroglu C, Basar E, Demiralp T, Schurmann M (1992) P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. Int J Psychophysiol 13:161–179

    Article  CAS  PubMed  Google Scholar 

  • Basar-Eroglu C, Struber D, Schurmann M, Stadler M, Basar E (1996) Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. Int J Psychophysiol 24:101–112

    Article  CAS  PubMed  Google Scholar 

  • Bidet-Caulet A, Fischer C, Besle J, Aguera PE, Giard MH, Bertrand O (2007) Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex. J Neurosci 27:9252–9261

    Article  CAS  PubMed  Google Scholar 

  • Borgers C, Epstein S, Kopell NJ (2005) Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proc Natl Acad Sci USA 102:7002–7007

    Article  PubMed  Google Scholar 

  • Brenner CA, Sporns O, Lysaker PH, O’Donnell BF (2003) EEG synchronization to modulated auditory tones in schizophrenia, schizoaffective disorder, and schizotypal personality disorder. Am J Psychiatry 160:2238–2240

    Article  PubMed  Google Scholar 

  • Brosch M, Budinger E, Scheich H (2002) Stimulus-related gamma oscillations in primate auditory cortex. J Neurophysiol 87:2715–2725

    PubMed  Google Scholar 

  • Busch NA, Schadow J, Frund I, Herrmann CS (2006) Time-frequency analysis of target detection reveals an early interface between bottom-up and top-down processes in the gamma-band. Neuroimage 29:1106–1116

    Article  PubMed  Google Scholar 

  • Crone NE, Boatman D, Gordon B, Hao L (2001) Induced electrocorticographic gamma activity during auditory perception. Clin Neurophysiol 112:565–582

    Article  CAS  PubMed  Google Scholar 

  • Debener S, Herrmann CS, Kranczioch C, Gembris D, Engel AK (2003) Top-down attentional processing enhances auditory evoked gamma band activity. Neuroreport 14:683–686

    Article  PubMed  Google Scholar 

  • Demiralp T, Basar-Eroglu C, Basar E (1996) Distributed gamma band responses in the brain studied in cortex, reticular formation, hippocampus and cerebellum. Int J Neurosci 84:1–13

    Article  CAS  PubMed  Google Scholar 

  • Di Russo F, Pitzalis S, Aprile T, Spitoni G, Patria F, Stella A, Spinelli D, Hillyard SA (2007) Spatiotemporal analysis of the cortical sources of the steady-state visual evoked potential. Hum Brain Mapp 28:323–334

    Article  PubMed  Google Scholar 

  • Draganova R, Ross B, Wollbrink A, Pantev C (2008) Cortical steady-state responses to central and peripheral auditory beats. Cereb Cortex 18:1193–1200

    Article  PubMed  Google Scholar 

  • Fedotchev AI, Bondar AT, Konovalov VF (1990) Stability of resonance EEG reactions to flickering light in humans. Int J Psychophysiol 9:189–193

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Academic Press, New York

    Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563

    Article  CAS  PubMed  Google Scholar 

  • Frund I, Schadow J, Busch NA, Korner U, Herrmann CS (2007) Evoked gamma oscillations in human scalp EEG are test-retest reliable. Clin Neurophysiol 118:221–227

    Article  PubMed  Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78:2643–2647

    Article  CAS  PubMed  Google Scholar 

  • Gutschalk A, Mase R, Roth R, Ille N, Rupp A, Hahnel S, Picton TW, Scherg M (1999) Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin Neurophysiol 110:856–868

    Article  CAS  PubMed  Google Scholar 

  • Herrmann CS (2001) Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 137:346–353

    Article  CAS  PubMed  Google Scholar 

  • Herrmann CS, Mecklinger A, Pfeifer E (1999) Gamma responses and ERPs in a visual classification task. Clin Neurophysiol 110:636–642

    Article  CAS  PubMed  Google Scholar 

  • Herrmann CS, Frund I, Lenz D (2010) Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev 34:981–992. doi:10.1016/j.neubiorev.2009.09.001

  • Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26:161–167

    Article  CAS  PubMed  Google Scholar 

  • Kaiser J, Lutzenberger W (2003) Induced gamma-band activity and human brain function. Neuroscientist 9:475–484

    Article  PubMed  Google Scholar 

  • Kaiser J, Heidegger T, Lutzenberger W (2008) Behavioral relevance of gamma-band activity for short-term memory-based auditory decision-making. Eur J Neurosci 27:3322–3328

    Article  PubMed  Google Scholar 

  • Kaiser J, Lutzenberger W, Decker C, Wibral M, Rahm B (2009) Task- and performance-related modulation of domain-specific auditory short-term memory representations in the gamma-band. Neuroimage 46:1127–1136

    Article  PubMed  Google Scholar 

  • Krishnan GP, Hetrick WP, Brenner CA, Shekhar A, Steffen AN, O’Donnell BF (2009) Steady state and induced auditory gamma deficits in schizophrenia. Neuroimage 47:1711–1719

    Article  CAS  PubMed  Google Scholar 

  • Kwon JS, O’Donnell BF, Wallenstein GV, Greene RW, Hirayasu Y et al (1999) Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 56:1001–1005

    Article  CAS  PubMed  Google Scholar 

  • Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal processing. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C (1996) Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 101:62–74

    Article  CAS  PubMed  Google Scholar 

  • Pastor MA, Artieda J, Arbizu J, Valencia M, Masdeu JC (2003) Human cerebral activation during steady-state visual-evoked responses. J Neurosci 23:11621–11627

    CAS  PubMed  Google Scholar 

  • Rols G, Tallon-Baudry C, Girard P, Bertrand O, Bullier J (2001) Cortical mapping of gamma oscillations in areas V1 and V4 of the macaque monkey. Vis Neurosci 18:527–540

    Article  CAS  PubMed  Google Scholar 

  • Ross B, Picton TW, Herdman AT, Pantev C (2004) The effect of attention on the auditory steady-state response. Neurol Clin Neurophysiol 2004:22

    CAS  PubMed  Google Scholar 

  • Schadow J, Lenz D, Dettler N, Frund I, Herrmann CS (2009) Early gamma-band responses reflect anticipatory top-down modulation in the auditory cortex. Neuroimage 15:651–658

    Article  Google Scholar 

  • Strogatz S (2003) Sync. The emerging science of spontaneous order. Hyperion, New York

    Google Scholar 

  • Tallon-Baudry C, Bertrand O, Henaff MA, Isnard J, Fischer C (2005) Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex 15:654–662

    Article  PubMed  Google Scholar 

  • Tiesinga PH, Fellous JM, Jose JV, Sejnowski TJ (2001) Computational model of carbachol-induced delta, theta, and gamma oscillations in the hippocampus. Hippocampus 11:251–274

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Jefferys JGR, Whittington MA (1997) Simulation of gamma rhythms in networks of interneurons and pyramidal cells. J Comput Neurosci 4:141–150

    Article  CAS  PubMed  Google Scholar 

  • Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117

    Article  CAS  PubMed  Google Scholar 

  • Walter VJ, Walter WG (1949) The central effects of rhythmic sensory stimulation. Electroencephalogr Clin Neurophysiol 1:57–86

    CAS  PubMed  Google Scholar 

  • Weisz N, Keil A, Wienbruch C, Hoffmeister S, Elbert T (2004) One set of sounds, two tonotopic maps: exploring auditory cortex with amplitude-modulated tones. Clin Neurophysiol 115:1249–1258

    Article  CAS  PubMed  Google Scholar 

  • Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38:315–336

    Article  CAS  PubMed  Google Scholar 

  • Wienbruch C, Paul I, Weisz N, Elbert T, Roberts LE (2006) Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus. Neuroimage 33:180–194

    Article  PubMed  Google Scholar 

  • Zaehle T, Frund I, Schadow J, Tharig S, Schoenfeld MA, Herrmann CS (2009) Inter- and intra-individual covariations of hemodynamic and oscillatory gamma responses in the human cortex. Front Hum Neurosci 3:8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (SFB/TRR31-TPA9) and the State of Saxony-Anhalt (excellence cluster C3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaehle, T., Lenz, D., Ohl, F.W. et al. Resonance phenomena in the human auditory cortex: individual resonance frequencies of the cerebral cortex determine electrophysiological responses. Exp Brain Res 203, 629–635 (2010). https://doi.org/10.1007/s00221-010-2265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2265-8

Keywords

Navigation