Experimental Brain Research

, Volume 203, Issue 2, pp 317–327 | Cite as

The effect of cortical repetitive transcranial magnetic stimulation on cognitive event-related potentials recorded in the subthalamic nucleus

  • M. Baláž
  • H. Srovnalová
  • I. Rektorová
  • I. Rektor
Research Article

Abstract

We studied whether the cognitive event-related potentials (ERP) in the subthalamic nucleus (STN) are modified by the modulation of the inferior frontal cortex (IFC) and the dorsolateral prefrontal cortex (DLPFC) with repetitive transcranial magnetic stimulation (rTMS). Eighteen patients with Parkinson’s disease who had been implanted with a deep brain stimulation (DBS) electrode were included in the study. The ERPs were recorded from the DBS electrode before and after the rTMS (1 Hz, 600 pulses) over either the right IFC (10 patients) or the right DLPFC (8 patients). The ERPs were generated by auditory stimuli. rTMS over the right IFC led to a shortening of ERP latencies from 277 ± 14 ms (SD) to 252 ± 19 ms in the standard protocol and from 296 ± 17 ms to 270 ± 20 ms in the protocol modified by a higher load of executive functions (both P < 0.01). The application of rTMS over the DLPFC and the sham stimulation over the IFC showed no significant changes. The shortening of ERP latency after rTMS over the right IFC reflected the increase in the speed of the cognitive process. The rTMS modulation of activity of the DLPFC did not influence the ERP. Connections (the IFC-STN hyperdirect pathway) with the cortex that bypass the BG-thalamocortical circuitries could explain the position of the STN in the processing of executive functions.

Keywords

Inferior frontal cortex Subthalamic nucleus Executive functions ERP P3 Hyperdirect pathway 

References

  1. Afsharpour S (1985) Topographical projections of the cerebral cortex to the subthalamic nucleus. J Comp Neurol 236:14–28CrossRefPubMedGoogle Scholar
  2. Albin RL, Young AB, Penny JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375CrossRefPubMedGoogle Scholar
  3. Aravamuthan BR, Muthusamy KA, Stein JF, Aziz TZ, Johansen-Berg H (2007) Topography of cortical and subcortical connections of the human pedunculoopontine and subthalamic nuclei. NeuroImage 37:694–705CrossRefPubMedGoogle Scholar
  4. Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J Neuorsci 26(9):2424–2433CrossRefGoogle Scholar
  5. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177CrossRefPubMedGoogle Scholar
  6. Baláz M, Rektor I, Pulkrábek J (2008) Participation of the subthalamic nucleus in executive functions: an intracerebral recording study. Mov Disord 23(4):553–557CrossRefPubMedGoogle Scholar
  7. Bares M, Rektor I, Kanovský P, Streitová H (2003) Cortical and subcortical distribution of middle and long latency auditory and visual evoked potentials in a cognitive (CNV) paradigm. Clin Neurophysiol 114(12):2447–2460CrossRefPubMedGoogle Scholar
  8. Barbas H, Henion TH, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313(1):65–94CrossRefPubMedGoogle Scholar
  9. Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid AL (2002) Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17(Suppl 3):S145–S149CrossRefPubMedGoogle Scholar
  10. Berendse HW, Groenewegen HJ (1991) The connections of the medial part of the subthalamic nucleus in the rat: evidence for a parallel organisation. In: Bernardi G, Carpenter MB, DiChiara G, Morelli M, Stanzione P (eds) The basal ganglia III. Plenum, New York, pp 89–98Google Scholar
  11. Bočková M, Chládek J, Jurák P, Halámek J (2008) The novelty P3 in the subthalamic nucleus. An intracerebral recording study. Mov Disord 23(Suppl 1):230Google Scholar
  12. Boggio PS, Fregni F, Bermpohl F, Mansur CG, Rosa M, Rumi DO et al (2005) Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov Disord 20(9):1178–1184CrossRefPubMedGoogle Scholar
  13. Bolam JP, Magill JP, Bevan MD (2002) The functional organization of the basal ganglia: new insights from anatomical and physiological analyses. In: Nicholson LFB, Faull RLN (eds) The basal ganglia VII. Plenum, New York, pp 371–378Google Scholar
  14. Brunia CHM, Damen EJP (1988) Distribution of slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroenceph Clin Neurophysiol 69:234–243CrossRefPubMedGoogle Scholar
  15. Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513:43–59CrossRefPubMedGoogle Scholar
  16. Chudasama Y, Baunez C, Robbins TW (2003) Functional disconnection of the medial prefrontal cortex and subthalamic nucleus in attentional performance: evidence for corticosubthalamic interaction. J Neurosci 23(13):5477–5485PubMedGoogle Scholar
  17. Croxson PL, Johansen-Berg H, Behrens TE, Robson MD, Pinsk MA, Gross CG, Richter W, Richter MC, Kastner S, Rushworth MF (2005) Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 28(39):8854–8866CrossRefGoogle Scholar
  18. del Olmo MF, Bello O, Cudeiro J (2007) Transcranial magnetic stimulation over dorsolateral prefrontal cortex in Parkinson’s disease. Clin Neurophysiol 118(1):131–139CrossRefPubMedGoogle Scholar
  19. Evers S, Böckermann I, Nyhuis PW (2001) The impact of transcranial magnetic stimulation on cognitive processing: an event-related potential study. Neuroreport 12(13):2915–2918CrossRefPubMedGoogle Scholar
  20. Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 23:318 5854, 1309-1312Google Scholar
  21. García-Larrea L, Cézanne-Bert G (1998) P3, Positive slow wave and working memory load: a study on the functional correlates of slow wave activity. Electroencephalogr Clin Neurophysiol 108:260–273CrossRefPubMedGoogle Scholar
  22. García-Larrea L, Broussolle E, Cézanne-Bert G, Mauguiere F (1997) P 300 and “frontal executive functions”: application of a dual-task paradigm in normal subjects and patients with Parkinson’s disease and progressive supranuclear palsy. Electroencephalogr Clin Neurophysiol 103:148Google Scholar
  23. Gerschlager W, Siebner HR, Rothwell JC (2001a) Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology 57:449–455PubMedGoogle Scholar
  24. Gerschlager W, Bloem BR, Alesch F, Lang W, Deecke L, Cunnington R (2001b) Bilateral subthalamic nucleus stimulation does not improve prolonged P300 latencies in Parkinson’s disease. J Neurol 248(4):285–289CrossRefPubMedGoogle Scholar
  25. Hallett M, Chokroverty S (2005) Magnetic stimulation in clinical neurophysiology, 2nd edn. Butterworth-Heinemann, Philadelphia, pp 106–120Google Scholar
  26. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano A (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20CrossRefPubMedGoogle Scholar
  27. Hoshi E (2006) Functional specialization within the dorsolateral prefrontal cortex : a review of anatomical and physiological studies of non-human primates. Neurosci Res 54(2):73–84CrossRefPubMedGoogle Scholar
  28. Ilinsky IA, Jouandet ML, Goldman-Rakic PS (1985) Organization of the nigrothalamocortical system in the rhesus monkey. J Comp Neurol 236(3):315–330CrossRefPubMedGoogle Scholar
  29. Jahanshahi M, Ardouin CMA, Brown RG, Rothwell JC, Obeso J, Albanese A et al (2000) The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 123:1142–1154CrossRefPubMedGoogle Scholar
  30. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156CrossRefPubMedGoogle Scholar
  31. Jiang Y (2004) Resolving dual-task interference: an fMRI study. Neuroimage 22(2):748–754CrossRefPubMedGoogle Scholar
  32. Jing H, Takigawa M, Hamada K, Okamura H, Kawaika Y, Yonezawa T et al (2001) Effects of high frequency repetitive transcranial magnetic stimulation on P300 event-related potential. Clin Neurophysiol 112:304–313CrossRefPubMedGoogle Scholar
  33. Kaffenberger T, Baumgartner T, Koeneke S, Jäncke L, Herwig U (2008) Chronometric features of processing unpleasant stimuli: a functional MRI-based transcranial magnetic stimulation study. Neuroreport 19(7):777–781CrossRefPubMedGoogle Scholar
  34. Kitai ST, Deniau JM (1981) Cortical inputs to the subthalamic nucleus: intracellular analysis. Brain Res 214:411–415CrossRefPubMedGoogle Scholar
  35. Kolomiets BP, Deniau JM, Mailly P, Ménétrey A, Glowinski J, Thierry AM (2001) Segregation and convergence of information flow through the cortico-subthalamic pathways. J Neurosci 21(15):5764–5772PubMedGoogle Scholar
  36. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349:1925–1934CrossRefPubMedGoogle Scholar
  37. Lanotte MM, Rizzone M, Bergamasco B, Faccani G, Melcarne A, Lopiano L (2002) Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry 72(1):53–58CrossRefPubMedGoogle Scholar
  38. Maurice N, Deniau JM, Glowinski J, Thierry AM (1998) Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits. J Neurosci 18:9539–9546PubMedGoogle Scholar
  39. Nambu A (2004) A new dynamic model of the cortico-basal ganglia loop. Progr Brain Res 134:461–466CrossRefGoogle Scholar
  40. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal hyperdirect pathway. Neurosci Res 43(2):111–117CrossRefPubMedGoogle Scholar
  41. Oishi M, Mochizuki Y, Hara M, Du C-M, Takasu T (1996) Effects of intravenous L-Dopa on P300 and regional cerebral blood flow in Parkinsonism. Int J Neurosci 85:147–154CrossRefPubMedGoogle Scholar
  42. Okun MS, Fernandez HH, Wu SS, Kirsch-Darrow L, Bowers D, Bova F, Suelter M, Jacobson CE IV, Wang X, Gordon CW Jr, Zeilman P, Romrell J, Martin P, Ward H, Rodriguez RL, Foote KD (2009) Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 65(5):586–595CrossRefPubMedGoogle Scholar
  43. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20(1):128–154CrossRefPubMedGoogle Scholar
  44. Polich J, Herbst KL (2000) P300 as a clinical assay: rationale, evaluation, and findings. Int J Psychophysiol 38(1):3–19CrossRefPubMedGoogle Scholar
  45. Prabhakar S, Syal P, Srivastava T (2000) P300 in newly diagnosed non-dementing Parkinson’s disease: effect of dopaminergic drugs. Neurol India 48:239PubMedGoogle Scholar
  46. Rektor I, Kaňovský P, Bareš M, Louvel J, Lamarche M (2001) Event-related potentials, CNV, readiness potential, and movement accompanying potential recorded from posterior thalamus in human subjects. A SEEG study. Neurophysiol Clin 31:253–261CrossRefPubMedGoogle Scholar
  47. Rektor I, Kaňovský P, Bareš M, Brázdil M, Streitová H, Klajblová I (2003) A SEEG study of ERP in motor and premotor cortices and in the basal ganglia. Clin Neurophysiol 114:463–471CrossRefPubMedGoogle Scholar
  48. Rektor I, Bareš M, Kaňovský P, Brázdil M, Klajblová I, Streitová H (2004) Cognitive potentials in the basal ganglia—frontocortical circuits. An intracerebral recording study. Exp Brain Res 158:289–301CrossRefPubMedGoogle Scholar
  49. Rektor I, Bareš M, Brázdil M, Kaňovský P, Rektorová I, Sochůrková D (2005) Cognitive- and movement-related potentials recorded in the human basal ganglia. Mov Disord 20(5):562–568CrossRefPubMedGoogle Scholar
  50. Rektorová I, Megová S, Bareš M, Rektor I (2005) Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular disease without dementia: a pilot study of seven patients. J Neurol Sci 15:157–161CrossRefGoogle Scholar
  51. Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148(1):1–16CrossRefPubMedGoogle Scholar
  52. Squires NK, Squires KC, Hillyard SA (1975) Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol 38:387–401CrossRefPubMedGoogle Scholar
  53. Stanzione P, Fattapposta F, Giunti P, D’Alessio C, Tagliati M, Affricano C, Amabile G (1991) P300 variations in parkinsonian patients before and during dopaminergic monotherapy: a suggested dopamine component in P300. Electroencephalogr Clin Neurophysiol 80(5):446–453CrossRefPubMedGoogle Scholar
  54. Strafella AP, Vanderwerf Y, Sadikot AF (2004) Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of subthalamic nucleus. Eur J Neurosci 20(8):2245–2249CrossRefPubMedGoogle Scholar
  55. Tachibana H, Aragane K, Kawabata K, Sugita M (1997) P3 latency change in aging and Parkinson disease. Arch Neurol 54(3):296–302PubMedGoogle Scholar
  56. Temel Y, Blokland A, Steinbusch HWM, Visser-Vandewalle V (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Progr Neurobiol 76:393–413CrossRefGoogle Scholar
  57. Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson’s disease: a systematic review. Parkinsonism Relat Disord 12(5):265–272CrossRefPubMedGoogle Scholar
  58. Vanderhasselt MA, De Raedt R, Baeken C, Leyman L, D’haenen H (2006) The influence of rTMS over the right dorsolateral prefrontal cortex on intentional set switching. Exp Brain Res 172(4):561–565CrossRefPubMedGoogle Scholar
  59. Verleger R (1997) On the utility of P3 latency as an index of mental chronometry. Psychophysiology 34(2):131–156CrossRefPubMedGoogle Scholar
  60. Voon V, Kubu C, Krack P, Houeto JL, Tröster AI (2006) Deep brain stimulation: neuropsychological and neuropsychiatric issues. Mov Disord 21(Suppl 14):S305–S327CrossRefPubMedGoogle Scholar
  61. Witt K, Daniels C, Reiff J, Krack P, Volkmann J, Pinsker MO et al (2008) Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol 7(7):605–614CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. Baláž
    • 1
  • H. Srovnalová
    • 1
  • I. Rektorová
    • 1
  • I. Rektor
    • 1
  1. 1.Department of NeurologySt. Anne’s University Hospital, Medical School of Masaryk UniversityBrnoCzech Republic

Personalised recommendations