Skip to main content
Log in

Somatotopic dominance in tactile temporal processing

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The sense of touch is initiated by stimulation of peripheral mechanoreceptors, and then the spatio-temporal pattern of the receptors’ activation is interpreted by central cortical processing. To explore the tactile central processing, we psychophysically studied human judgments of the temporal relationships between two tactile events occurring at different skin locations. We examined four types of two-point temporal judgments—simultaneity, temporal order, apparent motion, and inter-stimulus interval—which differ from one another in time scale and task requirement. To perform any of the four temporal judgment tasks, the brain has to integrate spatially separated inputs. The main focus of the present study is to examine how the spatial separation affects the temporal judgment tasks. Two spatial coordinates can be defined in touch: the somatotopic coordinate, defined by cortical topography, and the spatiotopic coordinate, defined in the environment. In our experiments, the somatotopic distance was manipulated by stimulating the middle and index fingers of the same hand or different hands (ipsilateral vs. bilateral conditions), while the spatiotopic distance was manipulated by increasing the stimulators’ separation under bilateral conditions (bilateral-near vs. bilateral-far conditions). Our results clearly demonstrated that all four of the temporal judgments were significantly affected by the somatotopic distance, but only slightly by the spatiotopic distance. The present results, together with the previous findings, suggest that tactile temporal judgments in a wide range of time scale, from several to several 100 ms, primarily reflect processing at the level of somatotopic representation unless the performance is further constrained by spatial processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For quantitative comparison across tasks, the JNDs of the temporal order judgments were multiplied by 1.746, since the JND can be matched with the half width at half height of simultaneity discrimination in terms of the standard deviation of the underlying Gaussian function (Fujisaki and Nishida 2009). 1.746 = 1.178/0.674, where 1.178 is the x value at which the normal distribution function is one half of the peak (corresponding to the half width at half height of simultaneity discrimination) and 0.674 is that at which the cumulative normal distribution function is 75% (corresponding to the JND of the temporal order judgment). The limit of simultaneity for the ipsilateral condition (36.9 ms) was smaller than for both bilateral conditions (70.5 ms for bilateral-near; 68.3 ms for bilateral-far) and the multiplied JNDs (57.6 ms for bilateral-near; 52.9 ms for bilateral-far). On the other hand, the multiplied JND for the ipsilateral condition (87.2 ms) was larger than the limit of simultaneity for either bilateral condition.

References

  • Andersen RA (1995) Encoding of intention and spatial location in the posterior parietal cortex. Cereb Cortex 5:457–469

    Article  CAS  PubMed  Google Scholar 

  • Andres KH, von During M (1973) Morphology of cutaneous receptors. Handbook of Sensory Physiology II, Springer

    Google Scholar 

  • Axelrod S, Thompson LW, Cohen LD (1968) Effects of senescence on the temporal resolution of somesthetic stimuli presented to one hand or both. J Gerontol 23:191–195

    CAS  PubMed  Google Scholar 

  • Azañón E, Soto-Faraco S (2007) Alleviating the “crossed-hands” deficit by seeing uncrossed rubber hands. Exp Brain Res 182:537–548

    Article  PubMed  Google Scholar 

  • Azañón E, Soto-Faraco S (2008) Changing reference frames during the encoding of tactile events. Curr Biol 18:1044–1049

    Article  PubMed  Google Scholar 

  • Brown SW (1995) Time, change, and motion: the effects of stimulus movement on temporal perception. Percept Psychophys 57:105–116

    CAS  PubMed  Google Scholar 

  • Brown LN, Sainsbury RS (2000) Hemispheric equivalence and age-related differences in judgments of simultaneity to somatosensory stimuli. J Clinic Exp Neuropsychol 22:587–598

    Article  CAS  Google Scholar 

  • Clark CR, Geffen GM (1990) Hemispheric equivalence for simultaneity judgements of somatosensory stimuli. Cog Neuropsychol 7:311–327

    Article  Google Scholar 

  • Constanzo R, Gardner EP (1980) A quantitative analysis of responses of direction-sensitive neurons in somatosensory cortex of awake monkeys. J Neurophysiol 43:1319–1341

    Google Scholar 

  • Craig JC (1985) Attending to two fingers: two hands are better than one. Percept Psychophys 38:496–511

    CAS  PubMed  Google Scholar 

  • Craig JC (2003) The effect of hand position and pattern motion on temporal order judgments. Percept Psychophys 65:779–788

    PubMed  Google Scholar 

  • Craig JC, Baihua X (1990) Temporal order and tactile patterns. Percept Psychophys 47:22–34

    CAS  PubMed  Google Scholar 

  • Driver J, Grossenbacher PG (1996) Multimodal spatial constraints on tactile selective attention. In: Innui T, McClelland JL (eds) Attention and performance XVI: information integration in perception and communication. MIT Press, Cambridge, pp 209–235

    Google Scholar 

  • Efron R, Lee DN (1971) The visual persistence of a moving stroboscopically illuminated object. Am J Psychol 84:365–376

    Article  CAS  PubMed  Google Scholar 

  • Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. Monographs on statistics and applied probability, 5th edn. Chapman& Hall, New York

    Google Scholar 

  • Essick GK, Whitsel BL (1985) Factors influencing cutaneous directional sensitivity: a correlative psychophysical and neurophysiological investigation. Brain Res 10:213–230

    Article  Google Scholar 

  • Fraisse P (1984) Perception and estimation of time. Annu Rev Psychol 35:1–36

    Article  CAS  PubMed  Google Scholar 

  • Freeman AW, Johnson KO (1982) A model accounting for effects of vibratory amplitude on responses of cutaneous mechanoreceptors in macaque monkey. J Physiol 323:43–64

    CAS  PubMed  Google Scholar 

  • Friedman RM, Chen LM, Roe AW (2004) Modality maps within primate somatosensory cortex. Proc Natl Acad Sci USA 101:12724–12729

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki W, Nishida S (2009) Audio—tactile superiority over visuo—tactile and audio–visual combinations in the temporal resolution of synchrony perception. Exp Brain Res 198:245–259

    Article  PubMed  Google Scholar 

  • Gallace A, Spence C (2005) Visual capture of apparent limb position influences tactile temporal order judgments. Neurosci Lett 379:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gardner EP, Constanzo R (1980) Neuronal mechanisms underlying direction sensitivity of somatosensory cortical neurons in awake monkeys. J Neurophysiol 43:1342–1354

    CAS  PubMed  Google Scholar 

  • Geffen GM, Rosa V, Luciano M (2000) Effect of preferred hand and sex. J Clinic Exp Neuropsychol 22:219–231

    Article  CAS  Google Scholar 

  • Graziano MS (1999) Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci USA 96:10418–10421

    Article  CAS  PubMed  Google Scholar 

  • Haggard P, Kitadono K, Press C, Taylor-Clarke M (2005) The brain’s fingers and hands. Exp Brain Res 172:94–102

    Article  PubMed  Google Scholar 

  • Hansson T, Brismar T (1999) Tactile stimulation of the hand causes bilateral cortical activation: a functional magnetic resonance study in humans. Neurosci Lett 271:29–32

    Article  CAS  PubMed  Google Scholar 

  • Harrar V, Harris LR (2005) Simultaneity constancy: detecting events with touch and vision. Exp Brain Res 166:465–473

    Article  PubMed  Google Scholar 

  • Iggo A, Muir AR (1969) The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol 200:763–796

    CAS  PubMed  Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983) Converging patterns of finger representation and complex response properties of neurons in area 1 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:327–337

    Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1993) Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey’s postcentral gyrus. Exp Brain Res 92:360–368

    Article  CAS  PubMed  Google Scholar 

  • Iwamura Y, Iriki A, Tanaka M (1994) Bilateral hand representation in the postcentral somatosensory cortex. Nature 369:554–556

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Vallbo AB (1979) Tactile sensibility in the human hand; relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286:282–300

    Google Scholar 

  • Johnston A, Bruno A, Watanabe J, Quansah B, Patel N, Dakin S, Nishida S (2008) Visually-based temporal distortion in dyslexia. Vis Res 48:1743–1858

    Article  Google Scholar 

  • Jones EG, Powell TPS (1970) Connections of the somatic sensory cortex of the rhesus monkey. III. Thalamic connections. Brain 93:37–56

    Article  CAS  PubMed  Google Scholar 

  • Kajimoto H, Inami M, Kawakami N, Tachi S (2004) SmartTouch: electric skin to touch the untouchable. IEEE CG&A 24:36–43

    Google Scholar 

  • Kalaska JF, Cohen DA, Prud’homme M, Hyde ML (1990) Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Exp Brain Res 80:351–364

    Article  CAS  PubMed  Google Scholar 

  • Kirman JH (1974) Tactile apparent movement: the effects of interstimulus onset interval and stimulus duration. Percept Psychophys 15:1–6

    Google Scholar 

  • Kirman JH (1975) The effect of number of stimulators on the optimal interstimulus onset interval in tactile apparent movement. Percept Psychophys 17:263–267

    Google Scholar 

  • Lakatos S, Shepard RN (1997) Time-distance relations in shifting attention between locations on one’s body. Percept Psychophys 59:557–566

    CAS  PubMed  Google Scholar 

  • Lines CR, Rugg MD, Milner AD (1984) The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time. Exp Brain Res 57:89–98

    Article  CAS  PubMed  Google Scholar 

  • Motoyoshi I (2004) The role of spatial interactions in perceptual synchrony. J Vis 4:352–361

    Article  PubMed  Google Scholar 

  • Nicholls ME, Lindell AK (2000) A left hemisphere, but not right hemispace, advantage for tactual simultaneity judgments. Percept Psychophys 62:717–725

    CAS  PubMed  Google Scholar 

  • Pöppel E (1988) Mindworks: time and conscious experience. Harcourt Brace Jovanovich, New York

    Google Scholar 

  • Powell TPS, Moutcastle VB (1959) Some aspects of the functional organization of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkins Hosp 105:133–162

    CAS  PubMed  Google Scholar 

  • Rinker MA, Craig JC (1994) The effect of spatial orientation on the perception of moving tactile stimuli. Percept Psycophys 56:356–362

    CAS  Google Scholar 

  • Roberts RD, Humphreys GW (2008) Task effects on tactile temporal order judgments: when space does and does not matter. J Exp Psychol 34:592–604

    Google Scholar 

  • Sakata H, Takaoka Y, Kawarasaki A, Shibutani H (1973) Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64:85–102

    Article  CAS  PubMed  Google Scholar 

  • Sanabria D, Soto-Faraco S, Spence C (2005) Spatiotemporal interactions between audition and touch depend on hand posture. Exp Brain Res 165:505–514

    Article  PubMed  Google Scholar 

  • Saron CD, Davidson RJ (1989) Visual evoked potential measures of interhemispheric transfer time in humans. Behav Neurosci 103:1115–1138

    Article  CAS  PubMed  Google Scholar 

  • Schnitzler A, Salmelin R, Salenius S, Jousmaki V, Hari R (1995) Tactile information from the human hand reaches the ipsilateral primary somatosensory cortex. Neurosci Lett 200:25–28

    Article  CAS  PubMed  Google Scholar 

  • Shanks MF, Powell TPS (1981) An electron microscopic study of the termination of thalamocortical fibres in areas 3b, 1 and 2 of the somatic sensory cortex in the monkey. Brain Res 218:35–47

    Article  CAS  PubMed  Google Scholar 

  • Sherrick CE (1968) Bilateral apparent haptic movement. Percept Psychophys 4:159–162

    Google Scholar 

  • Sherrick CE (1970) Temporal ordering of events in haptic space. IEEE Trans Man Machine Syst 11:25–28

    Article  Google Scholar 

  • Sherrick CE, Rogers R (1966) Apparent haptic movement. Percept Psycophys 1:175–180

    Google Scholar 

  • Shore DI, Spry E, Spence C (2002) Confusing the mind by crossing the hands. Cogn Brain Res 14:153–163

    Article  Google Scholar 

  • Shore DI, Gray K, Spry E, Spence C (2005) Spatial modulation of tactile temporal order judgments. Perception 34:1251–1262

    Article  PubMed  Google Scholar 

  • Soto-Faraco S, Ronald A, Spence C (2004a) Tactile selective attention and body posture: assessing the multisensory contributions of vision and proprioception. Percept Psychophys 66:1077–1094

    PubMed  Google Scholar 

  • Soto-Faraco S, Spence C, Kingstone A (2004b) Congruency effects between auditory and tactile motion: extending the phenomenon of cross-modal dynamic capture. Cogn Affect Behav Neurosci 4:208–217

    Article  PubMed  Google Scholar 

  • Spencer PS, Schaumburg HH (1973) An ultrastructural study of the inner core of the Paccinian corpuscle. J Neurocytol 2:217–235

    Article  CAS  PubMed  Google Scholar 

  • Suto Y (1952) The effect of space on time estimation (S-effect) in tactual space (I). Japanese J Psychol 22:189–201

    Google Scholar 

  • Terao M, Watanabe J, Yagi A, Nishida S (2008) Reduction of stimulus visibility compresses apparent temporal intervals. Nat Neurosci 11:541–542

    Article  CAS  PubMed  Google Scholar 

  • Tse PU, Intriligator J, Rivest J, Cavanagh P (2004) Attention and the subjective expansion of time. Percept Psychophys 66:1171–1189

    PubMed  Google Scholar 

  • van Eijk RL, Kohlrausch A, Juola JF, van de Par S (2008) Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type. Percept Psychophys 70:955–968

    Article  PubMed  Google Scholar 

  • Victor JD, Conte MM (2002) Temporal phase discrimination depends critically on separation. Vis Res 42:2063–2071

    Article  PubMed  Google Scholar 

  • Warren S, Hamalainen HA, Gardner EP (1986) Objective classification of motion- and direction-sensitive neurons in primary somatosensory cortex of awake monkeys. J Neurophysiol 56:598–622

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Kitazawa S (2001) Reversal of subjective temporal order due to arm crossing. Nature Neurosci 4:759–765

    Article  CAS  PubMed  Google Scholar 

  • Yoblick DA, Salvendy G (1970) Influence of frequency on the estimation of time for auditory, visual, and tactile modalities: the Kappa effect. J Exp Psychol 86:157–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for CREST and JSPS Fellows (20·10531).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinobu Kuroki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroki, S., Watanabe, J., Kawakami, N. et al. Somatotopic dominance in tactile temporal processing. Exp Brain Res 203, 51–62 (2010). https://doi.org/10.1007/s00221-010-2212-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2212-8

Keywords

Navigation