Skip to main content
Log in

Postural challenge and adaptation to vibration-induced disturbances

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The described experiment investigated whether adaptation to successive Achilles tendon vibration depends on the postural challenge. In phase 1, thirty-six participants were divided into three groups, each with a different postural challenge. After being blindfolded, participants received 15 trials of Achilles tendon vibration (10 s–90 Hz) while standing upright in either a free-standing condition (FS group), a light finger touch condition (LFT group), or a restrained-standing condition (RS group) in which a dorsal stand prevented body displacement. In phase 2, all participants were freely standing and received 15 additional trials of vibration. Antero-posterior trunk tilt was measured at the level of the trunk (C7). Although there were limited postural readjustments in LFT, adaptation was observed in phase 1 in both FS and LFT groups. In phase 2, the evoked postural displacement was greater in the RS group than in the other two groups. We concluded that although the absence of any postural challenge concomitant to the sensory stimulation prevented adaptation to occur, a minimal challenge was sufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barbieri G, Gissot AS, Fouque F, Casillas JM, Pozzo T, Perennou D (2008) Does proprioception contribute to the sense of verticality? Exp Brain Res 185(4):545–552

    Article  PubMed  Google Scholar 

  • Bove M, Bonzano L, Trompetto C, Abbruzzese G, Schieppati M (2006) The postural disorientation induced by neck muscle vibration subsides on lightly touching a stationary surface or aiming at it. Neuroscience 143:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Bove M, Fenoggio C, Tacchino A, Pelonsin E, Schieppati M (2009) Interaction between vision and neck proprioception in the control of stance. Neuroscience 164:1301–1608

    Article  Google Scholar 

  • Bronstein AM (1986) Suppression of visually evoked postural responses. Exp Brain Res 63:655–658

    Article  CAS  PubMed  Google Scholar 

  • Capicikova N, Rocchi L, Hlavacka F, Chiari L, Cappello A (2006) Human postural response to lower leg muscle vibration of different duration. Physiol Res 55(1):129–134

    Google Scholar 

  • Caudron S, Boy F, Forestier N, Guerraz M (2008a) Influence of expectation on postural disturbance evoked by proprioceptive stimulation. Exp Brain Res 184:53–59

    Article  PubMed  Google Scholar 

  • Caudron S, Ceyte H, Cian C, Guerraz M (2008b) Impact de la vibration des tendons d’Achille sur la perception d’orientation et de mouvements du corps. In: Lacour M, Thoumie P (eds) De la recherche à la pratique clinique, Collection Posture et Equilibre. Solal, Marseille, pp 85–97

    Google Scholar 

  • Ceyte H, Cian C, Zory R, Barraud PA, Roux A, Guerraz M (2007) Effect of Achilles tendon vibration on postural orientation. Neurosci Lett 416:71–75

    Article  CAS  PubMed  Google Scholar 

  • Day BL, Guerraz M (2007) Feedforward versus feedback modulation of vestibular-evoked balance responses by visual self-motion information. J Physiol 582:153–161

    Article  CAS  PubMed  Google Scholar 

  • Fransson PA, Tjernstrom F, Hafstrom A, Magnusson M, Johansson R (2002) Analysis of short- and long-term effects of adaptation in human postural control. Biol Cybern 86:355–365

    Article  PubMed  Google Scholar 

  • Fransson PA, Johansson R, Tjernstrom F, Magnusson M (2003) Adaptation to vibratory perturbations in postural control. IEEE Eng Med Biol Mag 22:53–57

    Article  CAS  PubMed  Google Scholar 

  • Guerraz M, Day BL (2005) Expectation and the vestibular control of balance. J Cogn Neurosci 17:463–469

    Article  PubMed  Google Scholar 

  • Guerraz M, Gianna C, Burchill P, Gresty MA, Bronstein AM (2001a) Effect of visual surrounding motion on body sway in a 3D environment. Percept Psychophys 63:47–58

    CAS  PubMed  Google Scholar 

  • Guerraz M, Thilo KV, Bronstein AM, Gresty MA (2001b) Influence of action and expectation on visual control of posture. Cog Brain Res 11:259–266

    Article  CAS  Google Scholar 

  • Ishizaki H, Pyykko I, Aalto H, Starck J (1991) Repeatability and effect of instruction of body sway. Acta Otolaryngol Suppl 481:589–592

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ, Lackner JR (1994) Fingertip contact influences human postural control. Exp Brain Res 100:495–502

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ, Lackner JR (1995) The role of haptic cues from rough and slippery surfaces in human postural control. Exp Brain Res 103:267–276

    Article  CAS  PubMed  Google Scholar 

  • Johannsen L, Wing AM, Hatzitaki V (2007) Effects of maintaining touch contact on predictive and reactive balance. J Neurophysiol 97:2686–2695

    Article  PubMed  Google Scholar 

  • Johansson R, Magnusson M, Fransson PA (1995) Galvanic vestibular stimulation for analysis of postural adaptation and stability. IEEE Trans Biomed Eng 42:282–292

    Article  CAS  PubMed  Google Scholar 

  • Keshner EA, Allum JH, Pfaltz CR (1987) Postural coactivation and adaptation in the sway stabilizing responses of normals and patients with bilateral vestibular deficit. Exp Brain Res 69:77–92

    Article  CAS  PubMed  Google Scholar 

  • Lackner JR, Rabin E, DiZio P (2000) Fingertip contact suppresses the destabilizing influence of leg muscle vibration. J Neurophysiol 84:2217–2224

    CAS  PubMed  Google Scholar 

  • Lee DN, Lishman JR (1975) Visual proprioceptive control of stance. J Hum Mov Stud 1:87–95

    Google Scholar 

  • Nashner LM (1976) Adapting reflexes controlling the human posture. Exp Brain Res 26:59–72

    Article  CAS  PubMed  Google Scholar 

  • O’Connor KW, Loughlin PJ, Redfern MS, Sparto PJ (2008) Postural adaptations to repeated optic flow stimulation in older adults. Gait Posture 28:385–391

    Article  PubMed  Google Scholar 

  • Rabin E, DiZio P, Lackner JR (2006) Time course of haptic stabilization of posture. Exp Brain Res 170:122–126

    Article  PubMed  Google Scholar 

  • Rogers MW, Wardman DL, Lord SR, Fitzpatrick RC (2001) Passive tactile sensory input improves stability during standing. Exp Brain Res 136:514–522

    Article  CAS  PubMed  Google Scholar 

  • Roll JP, Roll R (1988) From eye to foot. A proprioceptive chain involved in postural control. In: Amblard B, Berthoz A, Clarac F (eds) Posture and gait. Developpement, adaptation and modulation. Elsevier, Amsterdam, pp 155–164

    Google Scholar 

  • Smetanin BN, Popov KE, Kozhina GV (2002) Postural reactions to vibratory stimulation of calf muscles under condition of visual inversion in human. Hum Physiol 28:554–558

    Article  Google Scholar 

  • Smiley-Oyen AL, Cheng HY, Latt LD, Redfern MS (2002) Adaptation of vibration-induced postural sway in individuals with Parkinson’s disease. Gait Posture 16:188–197

    Article  PubMed  Google Scholar 

  • Tjernstrom F, Fransson PA, Hafstrom A, Magnusson M (2002) Adaptation of postural control to perturbations—a process that initiates long-term motor memory. Gait Posture 15:75–82

    Article  CAS  PubMed  Google Scholar 

  • Tjernstrom F, Fransson PA, Magnusson M (2005) Improved postural control through repetition and consolidation. J Vestib Res 15:31–39

    CAS  PubMed  Google Scholar 

  • Uimonen S, Laitakari K, Bloigu R, Sorri M (1994) The repeatability of posturographic measurements and the effects of sleep deprivation. J Vestib Res 4:29–36

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our gratitude to anonymous reviewers for their helpful comments on an earlier version of the manuscript. We thank David Hope for his comments and his corrections on the manuscript.

Conflict of interest statement

All authors disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Caudron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caudron, S., Nougier, V. & Guerraz, M. Postural challenge and adaptation to vibration-induced disturbances. Exp Brain Res 202, 935–941 (2010). https://doi.org/10.1007/s00221-010-2194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2194-6

Keywords

Navigation