Experimental Brain Research

, Volume 202, Issue 3, pp 669–679 | Cite as

Differential human brain activation by vertical and horizontal global visual textures

  • Jane E. Aspell
  • John Wattam-Bell
  • Janette Atkinson
  • Oliver J. Braddick
Research Article


Mid-level visual processes which integrate local orientation information for the detection of global structure can be investigated using global form stimuli of varying complexity. Several lines of evidence suggest that the identification of concentric and parallel organisations relies on different underlying neural substrates. The current study measured brain activation by concentric, horizontal parallel, and vertical parallel arrays of short line segments, compared to arrays of randomly oriented segments. Six subjects were scanned in a blocked design functional magnetic resonance imaging experiment. We compared percentage BOLD signal change during the concentric, horizontal and vertical blocks within early retinotopic areas, the fusiform face area and the lateral occipital complex. Unexpectedly, we found that vertical and horizontal parallel forms differentially activated visual cortical areas beyond V1, but in general, activations to concentric and parallel forms did not differ. Vertical patterns produced the highest percentage signal change overall and only area V3A showed a significant difference between concentric and parallel (horizontal) stimuli, with the former better activating this area. These data suggest that the difference in brain activation to vertical and horizontal forms arises at intermediate or global levels of visual representation since the differential activity was found in mid-level retinotopic areas V2 and V3 but not in V1. This may explain why earlier studies—using methods that emphasised responses to local orientation—did not discover this vertical–horizontal anisotropy.


Global processing Form vision Form coherence Orientation anisotropy fMRI 


  1. Achtman RL, Hess RF, Wang Y-Z (2003) Sensitivity for global shape detection. J Vis 3:616–624CrossRefPubMedGoogle Scholar
  2. Allman J, Miezin F, McGuinness E (1985) Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu Rev Neurosci 8:407–430CrossRefPubMedGoogle Scholar
  3. Appelle S (1972) Perception and discrimination as a function of stimulus orientation—oblique effect in man and animals. Psychol Bull 78:266CrossRefPubMedGoogle Scholar
  4. Aspell JE, Tanskanen T, Hurlbert AC (2005) Neuromagnetic correlates of visual motion coherence. Eur J Neurosci 22:2937–2945CrossRefPubMedGoogle Scholar
  5. Aspell JE, Wattam-Bell J, Braddick O (2006) Interaction of spatial and temporal integration in global form processing. Vis Res 46:2834–2841CrossRefPubMedGoogle Scholar
  6. Badcock D, Clifford C (2006) The inputs to global form. In: Jenkins M, Harris R (eds) Seeing spatial form. Oxford University Press, Oxford, pp 37–50Google Scholar
  7. Bell J, Badcock DR, Wilson H, Wilkinson F (2007) Detection of shape in radial frequency contours: independence of local and global form information. Vis Res 47:1518–1522CrossRefPubMedGoogle Scholar
  8. Braddick OJ, Lin MH, Atkinson J, O’Brien J, Wattam-Bell J, Turner R (1999) Form coherence: a measure of extrastriate pattern processing. Perception 28:59Google Scholar
  9. Braddick OJ, O’Brien JMD, Wattam-Bell J, Atkinson J, Turner R (2000) Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain. Curr Biol 10:731–734CrossRefPubMedGoogle Scholar
  10. Chapman B, Bonhoeffer T (1998) Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17. Proc Natl Acad Sci USA 95:2609–2614CrossRefPubMedGoogle Scholar
  11. Coppola DM, White LE, Fitzpatrick D, Purves D (1998) Unequal representation of cardinal and oblique contours in ferret visual cortex. Proc Natl Acad Sci USA 95:2621–2623CrossRefPubMedGoogle Scholar
  12. Cumming BG (2002) An unexpected specialization for horizontal disparity in primate primary visual cortex. Nature 418:633–636CrossRefPubMedGoogle Scholar
  13. Dakin SC (1997a) The detection of structure in glass patterns: Psychophysics and computational models. Vis Res 37:2227–2246CrossRefPubMedGoogle Scholar
  14. Dakin SC (1997b) Glass patterns: some contrast effects re-evaluated. Perception 26:253–268CrossRefPubMedGoogle Scholar
  15. Dakin SC (1999) Orientation variance as a quantifier of structure in texture. Spat Vis 12:1–30CrossRefPubMedGoogle Scholar
  16. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I: segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMedGoogle Scholar
  17. Dumoulin SO, Hess RF (2007) Cortical specialization for concentric shape processing. Vis Res 47:1608–1613CrossRefPubMedGoogle Scholar
  18. Essock EA, DeFord JK, Hansen BC, Sinai MJ (2003) Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: a horizontal effect. Vis Res 43:1329–1335CrossRefPubMedGoogle Scholar
  19. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1-a-47Google Scholar
  20. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207CrossRefPubMedGoogle Scholar
  21. Furmanski CS, Engel SA (2000) An oblique effect in human primary visual cortex. Nat Neurosci 3:535–536CrossRefPubMedGoogle Scholar
  22. Gallant JL, Braun J, Van Essen DC (1993) Selectivity for polar, hyperbolic, and cartesian gratings in macaque visual cortex. Science 259:100–103CrossRefPubMedGoogle Scholar
  23. Gallant JL, Shoup RE, Mazer JA (2000) A human extrastriate area functionally homologous to macaque V4. Neuron 27:227–235CrossRefPubMedGoogle Scholar
  24. Grill-Spector K, Malach R (2004) The Human Visual Cortex. Annu Rev Neurosci 27:649–677CrossRefPubMedGoogle Scholar
  25. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203CrossRefPubMedGoogle Scholar
  26. Hansen BC, Essock EA (2004) A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. J Vis 4(12):5, 1044–1060Google Scholar
  27. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243PubMedGoogle Scholar
  28. Humphreys GW, Forde EM (2001) Hierarchies, similarity, and interactivity in object recognition: “category-specific” neuropsychological deficits. Behav Brain Sci 24:453–476PubMedGoogle Scholar
  29. Ierusalimschy R (2003) Programming in Lua. Lua.org, Rio de JanerioGoogle Scholar
  30. Jenkinson M, Smith SM (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156CrossRefPubMedGoogle Scholar
  31. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841CrossRefPubMedGoogle Scholar
  32. Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311PubMedGoogle Scholar
  33. Keil MS, Cristóbal G (2000) Separating the chaff from the wheat: possible origins of the oblique effect. J Opt Soc Am A 17:697–710CrossRefGoogle Scholar
  34. Kobatake E, Tanaka K (1994) Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol 71:856–867PubMedGoogle Scholar
  35. Kofka K (1935) Principles of Gestalt psychology. Harcourt, New YorkGoogle Scholar
  36. Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK (2003) Integration of local features into global shapes: monkey and human fMRI studies. Neuron 37:333–346CrossRefPubMedGoogle Scholar
  37. Kovacs I, Julesz B (1993) A closed curve is much more than an incomplete one: Effect of closure in figure-ground segmentation. Proc Natl Acad Sci USA 90:7495–7497CrossRefPubMedGoogle Scholar
  38. Koyama S, Sasaki Y, Andersen GJ, Tootell RBH, Matsuura M, Watanabe T (2005) Separate processing of different global-motion structures in visual cortex is revealed by fMRI. Curr Biol 15:2027–2032CrossRefPubMedGoogle Scholar
  39. Kurki I, Saarinen J (2004) Shape perception in human vision: specialized detectors for concentric spatial structures? Neurosci Lett 360:100–102CrossRefPubMedGoogle Scholar
  40. Lamme VAF, Supèr H, Spekreijse H (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8:529–535CrossRefPubMedGoogle Scholar
  41. Lewis TL, Ellemberg D, Maurer D, Dirks M, Wilkinson F, Wilson HR (2004) A window on the normal development of sensitivity to global form in glass patterns. Perception 33:409–418CrossRefPubMedGoogle Scholar
  42. Li B, Peterson MR, Freeman RD (2003) Oblique effect: a neural basis in the visual cortex. J Neurophysiol 90:204–217CrossRefPubMedGoogle Scholar
  43. Liu T, Slotnick SD, Yantis S (2004) Human MT+ mediates perceptual filling-in during apparent motion. NeuroImage 21:1772–1780CrossRefPubMedGoogle Scholar
  44. Mahon LE, De Valois RL (2001) Cartesian and non-Cartesian responses in LGN, V1, and V2 cells. Vis Neurosci 18:973–981PubMedGoogle Scholar
  45. Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139CrossRefPubMedGoogle Scholar
  46. Maloney RK, Mitchison GJ, Barlow HB (1987) Limit to the detection of glass patterns in the presence of noise. J Opt Soc Am Opt Image Sci Vis 4:2336–2341CrossRefGoogle Scholar
  47. Maunsell JHR, Newsome WT (1987) Visual processing in monkey extrastriate cortex. Annu Rev Neurosci 10:363–401CrossRefPubMedGoogle Scholar
  48. Murray SO, Kersten D, Olshausen BA, Schrater P, Woods DL (2002) Shape perception reduces activity in human primary visual cortex. Proc Natl Acad Sci USA 99:15164–15169CrossRefPubMedGoogle Scholar
  49. Ostwald D, Lam JM, Li S, Kourtzi Z (2008) Neural coding of global form in the human visual cortex. J Neurophysiol 99:2456–2469CrossRefPubMedGoogle Scholar
  50. Pei F, Pettet MW, Vildavski VY, Norcia AM (2005) Event-related potentials show configural specificity of global form processing. Neuroreport 16:1427–1430CrossRefPubMedGoogle Scholar
  51. Romani A, Callieco R, Tavazzi E, Cosi V (2003) The effects of collinearity and orientation on texture visual evoked potentials. Clin Neurophysiol 114:1021–1026CrossRefPubMedGoogle Scholar
  52. Sasaki Y, Rajimehr R, Kim BW, Ekstrom LB, Vanduffel W, Tootell RBH (2006) The radial bias: a different slant on visual orientation sensitivity in human and nonhuman primates. Neuron 51:661–670CrossRefPubMedGoogle Scholar
  53. Schira MM, Fahle M, Donner TH, Kraft A, Brandt SA (2004) Differential contribution of early visual areas to the perceptual process of contour processing. J Neurophysiol 91:1716–1721CrossRefPubMedGoogle Scholar
  54. Sereno MI, Dale AM, Reppas JB (1993) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893CrossRefGoogle Scholar
  55. Smith S (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155CrossRefPubMedGoogle Scholar
  56. Smith MA, Bair W, Movshon JA (2002) Signals in macaque striate cortical neurons that support the perception of glass patterns. J Neurosci 22:8334–8345PubMedGoogle Scholar
  57. Switkes E, Mayer MJ, Sloan JA (1978) Spatial frequency analysis of the visual environment: Anisotropy and the carpentered environment hypothesis. Vis Res 18:1393–1399CrossRefPubMedGoogle Scholar
  58. Tootell RBH, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7060–7078PubMedGoogle Scholar
  59. Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RBH, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32:565–577CrossRefPubMedGoogle Scholar
  60. Wang G, Ding S, Yunokuchi K (2003) Representation of cardinal contour overlaps less with representation of nearby angles in cat visual cortex. J Neurophysiol 90:3912–3920CrossRefPubMedGoogle Scholar
  61. Warnking J, Dojat M, Guérin-Dugué A, Delon-Martin C, Olympieff S, Richard N, Chéhikian A, Segebarth C (2002) fMRI retinotopic mapping—step by step. NeuroImage 17:1665–1683CrossRefPubMedGoogle Scholar
  62. Wilkinson F, James TW, Wilson HR, Gati JS, Menon RS, Goodale MA (2000) An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. Curr Biol 10:1455–1458CrossRefPubMedGoogle Scholar
  63. Wilson HR, Wilkinson F (1998) Detection of global structure in Glass patterns: implications for form vision. Vis Res 38:2933–2947CrossRefPubMedGoogle Scholar
  64. Wilson HR, Wilkinson F (2003) Further evidence for global orientation processing in circular Glass patterns. Vis Res 43:563–564CrossRefPubMedGoogle Scholar
  65. Wilson HR, Wilkinson F, Asaad W (1997) Concentric orientation summation in human form vision. Vis Res 37:2325–2330CrossRefPubMedGoogle Scholar
  66. Woolrich MW, Ripley BD, Brady JM, Smith SM (2001) Temporal autocorrelation in univariate linear modelling of FMRI data. NeuroImage 14:1370–1386CrossRefPubMedGoogle Scholar
  67. Worsley KJ, Evans AC, Marrett S, Neelin P (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12:900–918PubMedGoogle Scholar
  68. Xu X, Collins CE, Khaytin I, Kaas JH, Casagrande VA (2006) Unequal representation of cardinal vs. oblique orientations in the middle temporal visual area. Proc Natl Acad Sci USA 103:17490–17495CrossRefPubMedGoogle Scholar
  69. Yacoub E, Harel N, Km UÄŸurbil (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci USA 105:10607–10612CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jane E. Aspell
    • 1
    • 3
  • John Wattam-Bell
    • 2
  • Janette Atkinson
    • 2
  • Oliver J. Braddick
    • 1
  1. 1.Department of Experimental PsychologyUniversity of OxfordOxfordUK
  2. 2.Department of PsychologyUniversity College LondonLondonUK
  3. 3.Brain-Mind InstituteEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations