Experimental Brain Research

, Volume 200, Issue 3–4, pp 223–237 | Cite as

Mirror neurons: from discovery to autism

  • Giacomo RizzolattiEmail author
  • Maddalena Fabbri-Destro

How the things started

In the winter of 1991 I (GR) sent to Nature a report on a surprising set of neurons that we (Giuseppe Di Pellegrino, Luciano Fadiga, Leonardo Fogassi, Vittorio Gallese) had found in the ventral premotor cortex of the monkey. The fundamental characteristic of these neurons was that they discharged both when the monkey performed a certain motor act (e.g., grasping an object) and when it observed another individual (monkey or human) performing that or a similar motor act (Di Pellegrino et al. 1992). These neurons are now known as mirror neurons (Fig.  1).


Autistic Spectrum Disorder Transcranial Magnetic Stimulation Typically Develop Inferior Frontal Gyrus Mirror Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The study was supported by Fondazione Monte Parma and by a grant (FIL) of the University of Parma to GR. M.F-D. was supported by Fondazione Cassa di Risparmio di Ferrara. We thank Rachel Wood for her comments on the article.


  1. Altschuler EL, Vankov A, Wang V, Ramachandran VS, Pineda JA (1997) Person see, person do: human cortical electrophysiological correlates of monkey see monkey do cell [abstract 719.17]. Presented at the annual meeting of the society for neuroscience, New Orleans, 25–30 October 1997Google Scholar
  2. Altschuler EL, Vankov A, Hubbard EM, Roberts E, Ramachandran VS, Pineda JA (2000) Mu wave blocking by observation of movement and its possible use as a tool to study theory of other minds [abstract 67.23]. Presented at the 30th annual meeting of the society for neuroscience, New Orleans, 4–9 November 2000Google Scholar
  3. Avikainen S, Wohlschläger A, Liuhanen S, Hänninen R, Hari R (2003) Impaired mirror-image imitation in Asperger and high-funtioning autistic subjects. Curr Biol 13:339–341PubMedCrossRefGoogle Scholar
  4. Bird G, Leighton J, Press C, Heyes C (2007) Intact automatic imitation of human and robot actions in autism spectrum disorders. Proc Biol Sci. 274:3027–3031PubMedCrossRefGoogle Scholar
  5. Boria S, Fabbri-Destro M, Cattaneo L, Sparaci L, Sinigaglia C, Santelli E, Cossu G, Rizzolatti G (2009) Intention understanding in autism. PLoS ONE 4:e5596PubMedCrossRefGoogle Scholar
  6. Borroni P, Montagna M, Cerri G, Baldissera F (2005) Cyclic time course of motor excitability modulation during observation of a cyclic hand movement. Brain Res 1065:115–124PubMedCrossRefGoogle Scholar
  7. Brass M, Schmitt RM, Spengler S, Gergely G (2007) Investigating action understanding: inferential processes versus action simulation. Curr Biol 17:2117–2121PubMedCrossRefGoogle Scholar
  8. Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404PubMedGoogle Scholar
  9. Buccino G, Vogt S, Ritzl A, Fink G, Zilles K, Freund H, Rizzolatti G (2004a) Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron 42:323–334PubMedCrossRefGoogle Scholar
  10. Buccino G, Lui F, Canessa N, Patteri I, Lagravinese G, Benuzzi F, Porro CA, Rizzolatti G (2004b) Neural circuits involved in the recognition of actions performed by non-conspecifics: an fMRI study. J Cogn Neurosci 16:114–126PubMedCrossRefGoogle Scholar
  11. Buccino G, Baumgaertner A, Colle L, Buechel C, Rizzolatti G, Binkofski F (2007) The neural basis for understanding non-intended actions. Neuroimage 36(Suppl 2):T119–T127PubMedCrossRefGoogle Scholar
  12. Byrne RW (2002) Seeing actions as hierarchically organized structures: great ape manual skills. In: Meltzoff AN, Prinz W (eds) The imitative mind. Development, evolution, brain bases. Cambridge University Press, Cambridge, UK, pp 122–140CrossRefGoogle Scholar
  13. Caggiano V, Fogassi L, Rizzolatti G, Thier P, Casile A (2009) Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science 324:403–406PubMedCrossRefGoogle Scholar
  14. Calvo-Merino B, Glaser DE, Grèzes J, Passingham RE, Haggard P (2005) Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb Cortex 15:1243–1249PubMedCrossRefGoogle Scholar
  15. Calvo-Merino B, Grèzes J, Glaser D, Passingham R, Haggard P (2006) Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol 16:1905–1910PubMedCrossRefGoogle Scholar
  16. Catmur C, Walsh V, Heyes C (2007) Sensorimotor learning configures the human mirror system. Curr Biol 17:1527–1531PubMedCrossRefGoogle Scholar
  17. Catmur C, Gillmeister H, Bird G, Liepelt R, Brass M, Heyes C (2008) Through the looking glass: counter-mirror activation following incompatible sensorimotor learning. Eur J Neurosci 28:1208–1215PubMedCrossRefGoogle Scholar
  18. Cattaneo L, Rizzolatti G (2009) The mirror neuron system. Arch Neurol 66:557–560PubMedCrossRefGoogle Scholar
  19. Cattaneo L, Fabbri-Destro M, Boria S, Pieraccini C, Monti A, Cossu G, Rizzolatti G (2007) Impairment of actions chains in autism and its possible role in intention understanding. Proc Natl Acad Sci USA 104:17825–17830PubMedCrossRefGoogle Scholar
  20. Chong TT, Cunnington R, Williams MA, Kanwisher N, Mattingley JB (2008) fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Curr Biol 18:1576–1580PubMedCrossRefGoogle Scholar
  21. Cochin S, Barthelemy C, Roux S, Martineau J (1999) Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci 11:1839–1842PubMedCrossRefGoogle Scholar
  22. Crammond DJ, Kalaska JF (2000) Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. J Neurophysiol 84:986–1005PubMedGoogle Scholar
  23. Cross ES, de Hamilton AF, Grafton ST (2006) Building a motor simulation de novo: observation of dance by dancers. Neuroimage 31:1257–1267PubMedCrossRefGoogle Scholar
  24. Csibra G, Gergely G (2007) ‘Obsessed with goals’: functions and mechanisms of teleological interpretation of actions in humans. Acta Psychol 124:60–78CrossRefGoogle Scholar
  25. Dapretto M, Davies MS, Pfeifer JH, Scott AA, Sigman M, Bookheimer SY, Iacoboni M (2006) Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci 9:28–30PubMedCrossRefGoogle Scholar
  26. de Lange FP, Spronk M, Willems RM, Toni I, Bekkering H (2008) Complementary systems for understanding action intentions. Curr Biol 18:454–457PubMedCrossRefGoogle Scholar
  27. Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180PubMedGoogle Scholar
  28. Dinstein I (2008) Human cortex: reflections of mirror neuron. Curr Biol 18:R956–R959PubMedCrossRefGoogle Scholar
  29. Dinstein I, Gardner JL, Jazayeri M, Heeger DJ (2008) Executed and observed movements have different distributed representations in human aIPS. J Neurosci 28:11231–11239PubMedCrossRefGoogle Scholar
  30. DSM-IV-TR (2000) American Psychiatric Association [APA], 4th ednGoogle Scholar
  31. Etzel JA, Gazzola V, Keysers C (2008) Testing simulation theory with cross-modal multivariate classification of fMRI data. PLoS One 3:e3690PubMedCrossRefGoogle Scholar
  32. Fabbri-Destro M, Rizzolatti G (2008) The mirror system in monkeys and humans. Physiology 23:171–179PubMedCrossRefGoogle Scholar
  33. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611PubMedGoogle Scholar
  34. Ferrari PF, Visalberghi E, Paukner A, Fogassi L, Ruggiero A, Suomi SJ (2006) Neonatal imitation in rhesus macaques. PLoS Biol 4:e302PubMedCrossRefGoogle Scholar
  35. Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007) Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 37:1315–1328PubMedCrossRefGoogle Scholar
  36. Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667PubMedCrossRefGoogle Scholar
  37. Frith CD, Frith U (1999) Interacting minds—a biological basis. Science 286:1692–1695PubMedCrossRefGoogle Scholar
  38. Gallese V, Keysers C, Rizzolatti G (2004) A unifying view of the basis of social cognition. Trends Cogn Sci 8:396–403PubMedCrossRefGoogle Scholar
  39. Gangitano M, Mottaghy FM, Pascual-Leone A (2001) Phase specific modulation of cortical motor output during movement observation. NeuroReport 12:1489–1492PubMedCrossRefGoogle Scholar
  40. Gastaut HJ, Bert J (1954) EEG changes during cinematographic presentation; moving picture activation of the EEG. Electroencephalogr Clin Neurophysiol 6:433–444PubMedCrossRefGoogle Scholar
  41. Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19:1239–1255PubMedCrossRefGoogle Scholar
  42. Gazzola V, Aziz-Zadeh L, Keysers C (2006) Empathy and the somatotopic auditory mirror system in humans. Curr Biol 16:1824–1829PubMedCrossRefGoogle Scholar
  43. Gazzola V, Rizzolatti G, Wicker B, Keysers C (2007a) The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. Neuroimage 35:1674–1684PubMedCrossRefGoogle Scholar
  44. Gazzola V, van der Worp H, Mulder T, Wicker B, Rizzolatti G, Keysers C (2007b) Aplasics born without hands mirror the goal of hand actions with their feet. Curr Biol 17:1235–1240PubMedCrossRefGoogle Scholar
  45. Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by PET: 2. Observation compared with imagination. Exp Brain Res 112:103–111PubMedCrossRefGoogle Scholar
  46. Grèzes J, Armony JL, Rowe J, Passingham RE (2003) Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. Neuroimage 18:928–937PubMedCrossRefGoogle Scholar
  47. Hamilton AF, Grafton ST (2006) Goal representation in human anterior intraparietal sulcus. J Neurosci 26:1133–1137PubMedCrossRefGoogle Scholar
  48. Hamilton AF, Grafton ST (2008) Action outcomes are represented in human inferior frontoparietal cortex. Cereb Cortex 18:1160–1168PubMedCrossRefGoogle Scholar
  49. Hamilton AF, Brindley RM, Frith U (2007) Imitation and action understanding in autistic spectrum disorders: how valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia 45:1859–1868PubMedCrossRefGoogle Scholar
  50. Hari R, Forss N, Avikainen S, Kirveskari S, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci USA 95:15061–15065PubMedCrossRefGoogle Scholar
  51. Heiser M, Iacoboni M, Maeda F, Marcus J, Mazziotta JC (2003) The essential role of Broca’s area in imitation. Eur J Neurosci 17:1123–1128PubMedCrossRefGoogle Scholar
  52. Hyvarinen J (1982) Posterior parietal lobe of the primate brain. Physiol Rev 62:1060–1129PubMedGoogle Scholar
  53. Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528PubMedCrossRefGoogle Scholar
  54. Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3:e79PubMedCrossRefGoogle Scholar
  55. Ishida H, Nakajima K, Inase M, Murata A (2009) Shared mapping of own and others’ bodies in visuotactile bimodal area of monkey parietal cortex. J Cogn Neurosci (Epub ahead of print)Google Scholar
  56. Jacob P, Jeannerod M (2005) The motor theory of social cognition: a critique. Trends Cogn Sci 9:21–25PubMedCrossRefGoogle Scholar
  57. Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320PubMedCrossRefGoogle Scholar
  58. Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 1999(285):2136–2139CrossRefGoogle Scholar
  59. Kakei S, Hoffman DS, Strick PL (2001) Direction of action is represented in the ventral premotor cortex. Nat Neurosci 4:1020–1025PubMedCrossRefGoogle Scholar
  60. Kalaska JF, Crammond DJ (1995) Deciding not to GO: neuronal correlates of response selection in a GO/NOGO task in primate premotor and parietal cortex. Cereb Cortex 5:410–428PubMedCrossRefGoogle Scholar
  61. Kanner L (1943) Autistic disturbances of affective contact. Nerv Child 2:217–225Google Scholar
  62. Kilner JM, Neal A, Weiskopf N, Friston KJ, Frith CD (2009) Evidence of mirror neurons in human frontal gyrus. J Neurosci 29:10153–10159PubMedCrossRefGoogle Scholar
  63. Knoblich G, Prinz W (2005) Linking perception and action: an ideomotor approach. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders. Oxford University Press, OxfordGoogle Scholar
  64. Leighton J, Bird G, Charman T, Heyes C (2008) Weak imitative performance is not due to a functional ‘mirroring’ deficit in adults with autism spectrum disorders. Neuropsychologia 46:1041–1049PubMedCrossRefGoogle Scholar
  65. Liepelt R, Von Cramon DY, Brass M (2008) How do we infer others’ goals from non-stereotypic actions? The outcome of context-sensitive inferential processing in right inferior parietal and posterior temporal cortex. Neuroimage 43:784–792PubMedCrossRefGoogle Scholar
  66. Lingnau A, Gesierich B, Caramazza A (2009) Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proc Natl Acad Sci USA 106:9925–9930PubMedCrossRefGoogle Scholar
  67. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878PubMedCrossRefGoogle Scholar
  68. Lui F, Buccino G, Duzzi D, Benuzzi F, Crisi G, Baraldi P, Nichelli P, Porro CA, Rizzolatti G (2008) Neural substrates for observing and imagining non object-directed actions. Soc Neurosci 3:261–275PubMedCrossRefGoogle Scholar
  69. Maeda F, Kleiner-Fisman G, Pascual-Leone A (2002) Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation. J Neurophysiol 87:1329–1335PubMedGoogle Scholar
  70. Marshall PJ, Bouquet CA, Shipley TF, Young T (2009) Effects of brief imitative experience on EEG desynchronization during action observation. Neuropsychologia 47:2100–2106PubMedCrossRefGoogle Scholar
  71. Martineau J, Cochin S, Magne R, Barthelemy C (2008) Impaired cortical activation in autistic children: is the mirror neuron system involved? Int J Psychophysiol 68:35–40PubMedCrossRefGoogle Scholar
  72. Meltzoff AN, Moore MK (1979) Interpreting “imitative” responses in early infancy. Science 205:217–219PubMedCrossRefGoogle Scholar
  73. Minshew NJ, Williams DL (2007) The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol 64:945–950PubMedCrossRefGoogle Scholar
  74. Mitchell JP (2008) Activity in right temporo-parietal junction is not selective for theory-of-mind. Cereb Cortex 18:262–271PubMedCrossRefGoogle Scholar
  75. Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G (1997) Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 78:2226–2230PubMedGoogle Scholar
  76. Nelissen K, Luppino G, Vanduffel W, Rizzolatti G, Orban GA (2005) Observing others: multiple action representation in the frontal lobe. Science 310:332–336PubMedCrossRefGoogle Scholar
  77. Nishitani N, Avikainen S, Hari R (2004) Abnormal imitation-related cortical activation sequences in Asperger’s syndrome. Ann Neurol 55:558–562PubMedCrossRefGoogle Scholar
  78. Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineta JA (2005) EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res 24:190–198PubMedCrossRefGoogle Scholar
  79. Peeters R, Simone L, Nelissen K, Fabbri-Destro M, Vanduffel W, Rizzolatti G, Orban GA (2009) The representation of tool use in humans and monkeys: common and unique human features. J. Neuroscience 76:207–214Google Scholar
  80. Penfield W, Rasmussen T (1950) The cerebral cortex of man. Macmillan, New YorkGoogle Scholar
  81. Prather JF, Peters S, Nowicki S, Mooney R (2008) Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature 451:305–310PubMedCrossRefGoogle Scholar
  82. Ramachandran VS, Oberman LM (2006) Broken mirrors: a theory of autism. Sci Am 295:62–69PubMedCrossRefGoogle Scholar
  83. Rizzolatti G (2005) The mirror neuron system and imitation. In: Hurley S, Chater N (eds) Perspectives on Imitation, vol 1. MIT press, CambridgeGoogle Scholar
  84. Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194PubMedCrossRefGoogle Scholar
  85. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192PubMedCrossRefGoogle Scholar
  86. Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movement. Exp Brain Res 71:491–507PubMedCrossRefGoogle Scholar
  87. Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F (1996) Localization of grasp representations in human by PET: 1. Observation versus execution. Exp Brain Res 111:246–252PubMedCrossRefGoogle Scholar
  88. Rizzolatti G, Fabbri-Destro M, Cattaneo L (2009) Mirror neurons and their clinical relevance. Nat Clin Pract Neurol 5:24–34PubMedCrossRefGoogle Scholar
  89. Rozzi S, Ferrari PF, Bonini L, Rizzolatti G, Fogassi L (2008) Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. Eur J Neurosci 28:1569–1588PubMedCrossRefGoogle Scholar
  90. Sakata H, Taira M, Murata A, Mine S (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex 5:429–438PubMedCrossRefGoogle Scholar
  91. Sakreida K, Schubotz RI, Wolfensteller U, von Cramon DY (2005) Motion class dependency in observers’ motor areas revealed by functional magnetic resonance imaging. J Neurosci 25:1335–1342PubMedCrossRefGoogle Scholar
  92. Sawamura H, Orban GA, Vogels R (2006) Selectivity of neuronal adaptation does not match response selectivity: a single-cell study of the FMRI adaptation paradigm. Neuron 49:307–318PubMedCrossRefGoogle Scholar
  93. Saxe R, Powell LJ (2006) It’s the thought that counts: specific brain regions for one component of theory of mind. Psychol Sci 17:692–699PubMedCrossRefGoogle Scholar
  94. Saxe R, Wexler A (2005) Making sense of another mind: the role of the right temporo-parietal junction. Neuropsychologia 43:1391–1399PubMedCrossRefGoogle Scholar
  95. Scholz J, Triantafyllou C, Whitfield-Gabrieli S, Brown EN, Saxe R (2009) Distinct regions of right temporo-parietal junction are selective for theory of mind and exogenous attention. PLoS ONE 4:e4869PubMedCrossRefGoogle Scholar
  96. Shepherd SV, Klein JT, Deaner RO, Platt ML (2009) Mirroring of attention by neurons in macaque parietal cortex. Proc Natl Acad Sci USA 106:9489–9494Google Scholar
  97. Southgate V, Hamilton AF (2008) Unbroken mirrors: challenging a theory of autism. Trends Cogn Sci 12:225–229PubMedCrossRefGoogle Scholar
  98. Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, Ungerleider L, Classen J (2005) Formation of a motor memory by action observation. J Neurosci 25:9339–9346PubMedCrossRefGoogle Scholar
  99. Stefan K, Classen J, Celnik P, Cohen LG (2008) Concurrent action observation modulates practice-induced motor memory formation. Eur J Neurosci 27:730–738PubMedCrossRefGoogle Scholar
  100. Strafella AP, Paus T (2000) Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study. NeuroReport 11:2289–2292PubMedCrossRefGoogle Scholar
  101. Theoret H, Halligan E, Kobayashi M, Fregni F, Tager-Flusberg H, Pascual-Leone A (2005) Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Curr Biol 15:R84–R85PubMedCrossRefGoogle Scholar
  102. Umiltà MA, Escola L, Intskirveli I, Grammont F, Rochat M, Caruana F, Jezzini A, Gallese V, Rizzolatti G (2008) When pliers become fingers in the monkey motor system. Proc Natl Acad Sci USA 105:2209–2213PubMedCrossRefGoogle Scholar
  103. Visalberghi E, Fragaszy DM (1990) Do monkeys ape? In: Parker ST, Gibson KR (eds) “Language” and intelligence in monkeys and apes. Cambridge University Press, Cambridge, pp 247–273Google Scholar
  104. Vogt S, Buccino G, Wohlschlager AM, Canessa N, Shah NJ, Zilles K, Eickhoff SB, Freund HJ, Rizzolatti G, Fink GR (2007) Prefrontal involvement in imitation learning of hand actions: effects of practice and expertise. Neuroimage 37:1371–1383PubMedCrossRefGoogle Scholar
  105. Wheaton KJ, Thompson JC, Syngeniotis A, Abbott DF, Puce A (2004) Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. Neuroimage 22:277–288PubMedCrossRefGoogle Scholar
  106. Williams JHG, Whiten A, Suddendorf T, Perrett DI (2001) Imitation, mirror neurons and autism. Neurosci Biobehav Rev 25:287–295PubMedCrossRefGoogle Scholar
  107. Woolsey CN, Settlage PH, Meyer DR, Sencer W, Pinto Hamuy T, Travis AM (1952) Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res Publ Assoc Res Nerv Ment Dis 30:238–264PubMedGoogle Scholar
  108. Zentall TR (2006) Imitation: definitions, evidence, and mechanisms. Anim Cogn 9:335–353PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Dipartimento di Neuroscienze, Sezione FisiologiaUniversità di ParmaParmaItaly
  2. 2.Istituto Italiano di Tecnologia (IIT) Unità di ParmaParmaItaly
  3. 3.Dipartimento SBTA, Sezione di Fisiologia UmanaUniversità di FerraraFerraraItaly

Personalised recommendations