Skip to main content

Advertisement

Log in

Spatial summation of thermal sensations depends on skin type and skin sensitivity

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The objective of the present study was to examine the extent to which spatial summation (SS) of thermal senses is affected by skin type and skin thermal sensitivity. A total of 19 healthy subjects underwent measurements of warm- and cold-sensation threshold (WST and CST) with a large (9 cm2) and small (2.25 cm2) stimulation area, within the glabrous (palm) and hairy skin (dorsal surface) of the hand. SS of WST was also measured in warm-sensitive and warm-insensitive hairy skin sites. WST and CST significantly increased as stimulation area decreased (at a similar amount), in both hairy and glabrous skin. SS of CST in the glabrous skin was larger than that of hairy skin. A significant SS of WS existed in both warm-sensitive and warm-insensitive sites but the amount of SS was larger in warm-insensitive sites. Sex did not affect any of the factors tested. The similar amount of SS for WST and CST suggest that despite possible differences in receptor density, these two sub-systems share common features. Based on the stimulation areas used herein and on receptive-field (RF) sizes, SS of WST and CST appears to occur within RF of a single neuron. The larger magnitude of SS in the glabrous than hairy skin might suggest a larger integration of sensory information from the former, possibly due to a greater functional role of the palm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrew D, Craig AD (2001) Spinothalamic lamina I neurones selectively responsive to cutaneous warming in cats. J Physiol 537:489–495

    Article  PubMed  CAS  Google Scholar 

  • Andrew D, Craig AD (2002) Quantitative responses of spinothalamic lamina I neurones to graded mechanical stimulation in the cat. J Physiol 545(Pt 3):913–931

    Article  PubMed  CAS  Google Scholar 

  • Arendt-Nielsen L, Bjerring P (1988) Sensory and pain threshold characteristics to laser stimuli. J Neurol Neurosurg Psychiatr 51:35–42

    Article  PubMed  CAS  Google Scholar 

  • Bradley RM (1995) Essentials of oral physiology. Bradley RM (ed) 2nd edn. Mosby, Missouri, pp 145–160

  • Campero M, Serra J, Bostock H, Ochoa JL (2001) Slowly conducting afferents activated by innocuous low temperature in human skin. J Physiol 535:855–865

    Article  PubMed  CAS  Google Scholar 

  • Chen ACN, Niddama DM, Crawfordb HJ, Oostenveldc R, Arendt-Nielsen L (2002) Spatial summation of pain processing in the human brain as assessed by cerebral event related potentials. Neurosci Lett 328:190–194

    Article  PubMed  CAS  Google Scholar 

  • Christensen BN, Perl ER (1970) Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J Neurophysiol 33:293–311

    PubMed  CAS  Google Scholar 

  • Craig AD, Krout K, Andrew D (2001) Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol 86:1459–1480

    PubMed  CAS  Google Scholar 

  • Defrin R, Urca G (1996) Spatial summation of heat pain: a reassessment. Pain 66:23–29

    Article  PubMed  CAS  Google Scholar 

  • Defrin R, Givon R, Raz N, Urca G (2006) Spatial summation and spatial discrimination of heat pain. Pain 126:123–131

    Article  PubMed  Google Scholar 

  • Dostrovsky JO, Craig AD (1996) Cooling-specific spinothalamic neurons in the monkey. J Neurophysiol 76:3656–3665

    PubMed  CAS  Google Scholar 

  • Dostrovsky JO, Hellon RF (1978) The representation of facial temperature in the caudal trigeminal nucleus of the cat. J Physiol 277:29–47

    PubMed  CAS  Google Scholar 

  • Duclaux R, Kenshalo SRDR (1980) Response characteristics of cutaneous warm receptors in the monkey. J Neurophysiol 43:1–15

    PubMed  CAS  Google Scholar 

  • Fruhstorfer H, Lindblom U, Schmidt WG (1976) Method for quantitative estimation of thermal thresholds in patients. J Neurol Neurosurg Psychiatr 39:1071–1075

    Article  PubMed  CAS  Google Scholar 

  • Granovsky Y, Matre D, Sokolik A, Lorenz J, Casey KL (2005) Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis. Pain 115:238–247

    Article  PubMed  Google Scholar 

  • Green BG, Cruz A (1998) “Warmth-insensitive fields”: evidence of sparse and irregular innervation of human skin by the warmth sense. Somatosens Mot Res 15:269–275

    Article  PubMed  CAS  Google Scholar 

  • Green BG, Zaharchuk R (2001) Spatial variation in sensitivity as a factor in measurements of spatial summation of warmth and cold. Somatosens Mot Res 18:181–190

    Article  PubMed  CAS  Google Scholar 

  • Hardy JD, Oppel TW (1937) Studies on temperature sensation. III. The sensitivity of the body to heat and the spatial summation of the end organ responses. J Clin Invest 16:533–540

    Article  PubMed  CAS  Google Scholar 

  • Hardy JD, Oppel TW (1938) Studies in temperature sensation. IV. The stimulation of cold sensation by radiation. J Clin Invest 17:771–778

    Article  PubMed  CAS  Google Scholar 

  • Hensel H (1969) Cutane Warmereceptoren bei Primaten. Pflügers Arch 818:150–152

    Article  Google Scholar 

  • Hensel H, Boman KKA (1960) Afferent impulses in cutaneous sensory nerves in human subjects. J Neurophysiol 23:564–578

    PubMed  CAS  Google Scholar 

  • Hensel H, Iggo A (1971) Analysis of cutaneous warm and cold fibres in primates. Pflügers Arch 329:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hensel H, Andres KH, Diiring MV (1974) Structure and function of cold receptors. Pflügers Arch 352:1–10

    Article  PubMed  CAS  Google Scholar 

  • Herget CM, Hardy JD (1941) Temperature sensation: the spatial summation of heat. Am J Physiol 135:426–429

    Google Scholar 

  • Herget CM, Granath LP, Hardy JD (1941) Warmth sense in relation to the area of skin stimulated. Am J Physiol 134:20–26

    Google Scholar 

  • Holcberg G, Huleihel M, Katz M, Segal D, Sapir O, Mazor M, Malek A, Schneider H, Harrison JLK, Davis KD (1999) Cold-evoked pain varies with skin type and cooling rate: a psychophysical study in humans. Pain 83:123–135

    Article  Google Scholar 

  • Iannetti GD, Zambreanu L, Tracey I (2006) Similar nociceptive afferents mediate psychophysical and electrophysiological responses to heat stimulation of glabrous and hairy skin in humans. J Physiol 577:235–248

    Article  PubMed  CAS  Google Scholar 

  • Iggo A (1969) Cutaneous thermoreceptors in primates and subprimates. J Physiol (Lond) 200:403430

    Google Scholar 

  • Jacobs R, Wu CH, Goossens K, Van Loven K, Van Hees J, Van Steenberghe D (2002) Oral mucosal versus cutaneous sensory testing: a review of the literature. J Oral Rehabil 29:923–950

    Article  PubMed  CAS  Google Scholar 

  • Kenshalo DR, Gallegos ES (1967) Multiple temperature-sensitive spots innervated by single nerve fibers. Science 158:1064–1065

    Article  PubMed  CAS  Google Scholar 

  • Kojo I, Pertovaara A (1987) The effects of stimulus area and adaptation temperature on warm and heat pain thresholds in man. Int J Neurosci 32:875–880

    Article  PubMed  CAS  Google Scholar 

  • Konietzny F, Hensel H (1977) The dynamic response of warm units in human skin nerves. Pflügers Arch 370:111–114

    Article  PubMed  CAS  Google Scholar 

  • Krogstad AL, Elam M, Karlsson T, Wallin BG (1995) Arteriovenous anastomoses and the thermoregulatory shift between cutaneous vasoconstrictor and vasodilator reflexes. J Autonom Nervous Sys 53:215–222

    Article  CAS  Google Scholar 

  • LaMotte RH, Campbell JN (1978) Comparison of responses of warm and nociceptive C-fiber afferents in monkey with human judgments of thermal pain. J Neurophysiol 41:509–528

    PubMed  CAS  Google Scholar 

  • Marks LE, Stevens JC (1973) Spatial summation of warmth: influence of duration and configuration of the stimulus. Am J Psychol 86:251–267

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Nelson RJ, Kaas JH, Stryker MP, Jenkins WM, Zook JM, Cynader MS, Schoppmann A (1987) Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. J Comp Neurol 258:281–296

    Article  PubMed  CAS  Google Scholar 

  • Moss-Salentijn L (1992) The human tactile system. In: Nicholls HR (ed) Advanced tactile sensing for robotics and automated system, vol 5. World Scientific Publishing, Singapore, pp 123–150

  • Nouveau-Richard S, Monot M, Bastien P, De Lacharriere O (2004) In vivo epidermal thickness measurement: ultrasound vs confocal imaging. Skin Res Technol 10:136–140

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Iwase S, Sugenoya J, Mano T, Sugiyama Y, Yamamoto K (1994) Different thermal dependency of cutaneous sympathetic outflow to glabrous and hairy skin in humans. Eur J Appl Physiol Occup Physiol 68:460–464

    Article  PubMed  CAS  Google Scholar 

  • Perl E (1968) Myelinated afferent fibres innervating the primate skin and their response to noxious stimuli. J Physiol (Lond) 197:593–615

    CAS  Google Scholar 

  • Pons TP, Wall JT, Garraghty PE, Cusick CG, Kaas JH (1987) Consistent features of the hand in area 3b of macaque monkeys. Somatosens Res 4:309–331

    Article  PubMed  CAS  Google Scholar 

  • Poulos DA, Lende RA (1970) Response of trigeminal ganglion neurones to thermal stimulation of oral-facial regions. 1. Steady state. J Neurophysiol 33:508–517

    PubMed  CAS  Google Scholar 

  • Stevens JC (1991) Thermal sensibility. In: Heller MA, Schiff W (eds) The psychology of touch. Lawrence Erlbaum, Hillsdale, pp 61–90

    Google Scholar 

  • Stevens JC, Choo KK (1998) Temperature sensitivity of the body surface over the life span. Somatosens Mot Res 15:13–28

    Article  PubMed  CAS  Google Scholar 

  • Stevens JC, Marks LE (1971) Spatial summation and the dynamics of warmth sensation. Percept Psychophys 9:291–298

    Google Scholar 

  • Stevens JC, Marks LE (1979) Spatial summation of cold. Physiol Behav 22:541–547

    Article  PubMed  CAS  Google Scholar 

  • Stevens JC, Marks LE, Simonson DC (1974) Regional sensitivity and spatial summation in the warmth sense. Physiol Behav 13:825–836

    Article  PubMed  CAS  Google Scholar 

  • Sumino R, Dubner R, Starkman S (1973) Responses of small myelinated ‘warm’ fibers to noxious heat stimuli applied to the monkey’s face. Brain Res 62:260–263

    Article  PubMed  CAS  Google Scholar 

  • Towell AD, Furvesaand AM, Boyda SG (1996) CO2 laser activation of nociceptive and non-nociceptive thermal afferents from hairy and glabrous skin. Pain 66:79–86

    Article  PubMed  CAS  Google Scholar 

  • Treede RD, Meyer RA, Raja SN, Campbell JN (1995) Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J Physiol 483:747–758

    PubMed  CAS  Google Scholar 

  • Willer JC, Boureau F, Berny J (1979) Nociceptive flexion reflexes elicited by noxious laser radiant heat in man. Pain 7:15–20

    Article  PubMed  CAS  Google Scholar 

  • Yarnitsky D, Ochoa JL (1990) Studies of heat pain sensation in man: perception threshold, rate of stimulus rise and reaction time. Pain 40:85–91

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Defrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Defrin, R., Petrini, L. & Arendt-Nielsen, L. Spatial summation of thermal sensations depends on skin type and skin sensitivity. Exp Brain Res 198, 29–36 (2009). https://doi.org/10.1007/s00221-009-1934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1934-y

Keywords

Navigation