Enhanced sensory perception in synaesthesia

Abstract

Previous findings imply that synaesthetic experience may have consequences for sensory processing of stimuli that do not themselves trigger synaesthesia. For example, synaesthetes who experience colour show enhanced perceptual processing of colour compared to non-synaesthetes. This study aimed to investigate whether enhanced perceptual processing was a core property of synaesthesia by contrasting tactile and colour sensitivity in synaesthetes who experience either colour, touch, or both touch and colour as evoked sensations. For comparison the performance of non-synaesthetic control subjects was also assessed. There was a relationship between the modality of synaesthetic experience and the modality of sensory enhancement. Synaesthetes who experience colour have enhanced colour sensitivity and synaesthetes who experience touch have enhanced tactile sensitivity. These findings suggest the possibility that a hyper-sensitive concurrent perceptual system is a general property of synaesthesia and are discussed in relation to theories of the condition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aghajanian GK, Marek GJ (1999) Serotonin and hallucinogens. Neuropsychopharmacology 21:16S–23S

    PubMed  CAS  Google Scholar 

  2. Banissy MJ, Ward J (2007) Mirror-touch synaesthesia is linked with empathy. Nat Neurosci 10:815–816

    PubMed  Article  CAS  Google Scholar 

  3. Bargary G, Mitchell KJ (2008) Synaesthesia and cortical connectivity. Trends Neurosci 31:335–342

    PubMed  Article  CAS  Google Scholar 

  4. Barnett KJ, Fox JJ, Molholm S, Kelly SP, Shalgi S, Mitchell KJ, Newell FN (2008) Differences in early sensory-perceptual processing in synaesthesia: a visual evoked potential study. Neuroimage 43:605–613

    PubMed  Article  Google Scholar 

  5. Blake R, Palmeri TJ, Marois R, Kim CY (2005) On the perceptual reality of synesthetic color. In: Robertson L, Sagiv N (eds) Synesthesia: perspectives from cognitive neuroscience. Oxford University Press, Oxford, pp 47–73

    Google Scholar 

  6. Blakemore SJ, Bristow D, Bird G, Frith C, Ward J (2005) Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. Brain 128:1571–1583

    PubMed  Article  Google Scholar 

  7. Cohen Kadosh R, Henik A (2006) When a line is a number: colour yields magnitude information in a digit-colour synaesthete. Neuroscience 137:3–5

    PubMed  Article  CAS  Google Scholar 

  8. Cohen Kadosh R, Henik A (2007) Can synaesthesia research inform cognitive science? Trends Cogn Sci 11:177–184

    PubMed  Article  Google Scholar 

  9. Cohen Kadosh R, Walsh V (2006) Cognitive neuroscience: rewired or crosswired brains. Curr Biol 16:962–963

    Article  Google Scholar 

  10. Cohen Kadosh R, Walsh V (2008) Synaesthesia and cortical connections: cause or correlation? Trends Neurosci 31:549–550

    PubMed  Article  CAS  Google Scholar 

  11. Cohen Kadosh R, Cohen Kadosh K, Henik A (2007) The neural correlate of bidirectional synaesthesia: a combined ERP and fMRI study. J Cogn Neurosci 19:2050–2059

    PubMed  Article  Google Scholar 

  12. Cohen Kadosh R, Henik A, Catena A, Walsh V, Fuentes LJ (2009) Induced cross-modal synesthetic experience without abnormal neuronal connections. Psychol Sci 20:258–265

    PubMed  Article  Google Scholar 

  13. Davidoff J (2001) Language and perceptual categorisation. Trends Cogn Sci 5:382–387

    PubMed  Article  Google Scholar 

  14. Eagleman DM, Kagan AD, Nelson SS, Sagaram D, Sarma AK (2007) A standardized test battery for the study of synaesthesia. J Neurosci Methods 159:139–145

    PubMed  Article  Google Scholar 

  15. Goldreich D, Kanics IM (2003) Tactile acuity is enhanced in blindness. J Neurosci 23:3439–3445

    PubMed  CAS  Google Scholar 

  16. Goller A, Otten L, Ward J (2009) Seeing sounds and hearing colours: an event-related potential study of audio-visual synaesthesia. J Cogn Neurosci. doi:10.1162/jocn2009.21134

  17. Grossenbacher PG, Lovelace CT (2001) Mechanisms of synaesthesia: cognitive and physiological constraints. Trends Cogn Sci 5:36–41

    PubMed  Article  Google Scholar 

  18. Hong SW, Blake R (2008) Early visual mechanisms do not contribute to synaesthetic colour experience. Vision Res 48:1018–1026

    PubMed  Article  Google Scholar 

  19. Howell DC (2002) Statistical methods for psychology. Thomson Learning, USA

    Google Scholar 

  20. Hubbard EM, Ramachandran VS (2005) Neurocognitive mechanisms of synaesthesia. Neuron 48:509–520

    PubMed  Article  CAS  Google Scholar 

  21. Johnsen KO, Philips JR (1981) Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition. J Neurophysiol 46:1177–1191

    Google Scholar 

  22. Kaplan E (1991) The receptive field of retinal ganglion cells in cat and monkey. In: Leventhal AG (ed) Vision and visual dysfunction. CRC Press, Boston, pp 10–40

    Google Scholar 

  23. Kauffman T, Théoret H, Pascual-Leone A (2002) Braille character discrimination in blindfolded human subjects. Neuroreport 13:571–574

    PubMed  Article  Google Scholar 

  24. Kim CY, Blake R, Palmeri TJ (2006) Perceptual interaction between real and synesthetic colors. Cortex 42:195–203

    PubMed  Article  Google Scholar 

  25. Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401

    PubMed  Article  CAS  Google Scholar 

  26. Rich AN, Mattingley JB (2002) Anomalous perception in synaesthesia: a cognitive neuroscience. Nat Rev Neurosci 3:43–52

    PubMed  Article  CAS  Google Scholar 

  27. Robertson D, Davies I, Davidoff J (2000) Colour categories are not universal: replications and new evidence from a stone-age culture. J Exp Psychol 129:369–398

    Google Scholar 

  28. Rouw R, Scholte HS (2007) Increased structural connectivity in grapheme-colour synaesthesia. Nat Neurosci 10:792–797

    PubMed  Article  CAS  Google Scholar 

  29. Saenz M, Koch C (2008) The sound of change: visually-induced auditory synesthesia. Curr Biol 18:650–651

    Article  Google Scholar 

  30. Sagiv N, Ward J (2006) Cross-modal interactions: lessons from synaesthesia. Prog Brain Res 155:263–275

    Google Scholar 

  31. Smilek D, Dixon MJ, Cudahy C, Merikle PM (2001) Synaesthetic photisms influence visual perception. J Cogn Neurosci 13:930–936

    PubMed  Article  CAS  Google Scholar 

  32. Van Boven RW, Johnson K (1994) A psychophysical study of the mechanisms of sensory recovery following nerve injury in humans. Brain 117:149–167

    PubMed  Article  Google Scholar 

  33. Van Boven RW, Hamilton RH, Kauffman T, Keenan P, Pascual-Leone A (2000) Tactile spatial resolution in blind Braille readers. Neurology 54:2230–2236

    PubMed  CAS  Google Scholar 

  34. Vega-Bermudez F, Johnsen KO (1999) SA1 and RA receptive fields, response variability, and population response mapped with a probe array. J Neurophysiol 81:2701–2710

    PubMed  CAS  Google Scholar 

  35. Wittenberg GF, Werhahn KJ, Wassermann EM, Herscovitch P, Cohen LG (2004) Functional connectivity between somatosensory and visual cortex in early blind humans. Eur J Neurosci 20:1923–1927

    PubMed  Article  Google Scholar 

  36. Yaro C, Ward J (2007) Searching for Shereshevski: what is superior about the memory of synaesthetes? Q J Exp Psychol 60:681–695

    Article  Google Scholar 

Download references

Acknowledgments

MJB is supported by an Economic and Social Research Council Studentship. This work was partly supported by a MRC grant to VW. We would like to thank Gerrit Maus and Clare Jonas for assistance with the research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Banissy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Banissy, M.J., Walsh, V. & Ward, J. Enhanced sensory perception in synaesthesia. Exp Brain Res 196, 565–571 (2009). https://doi.org/10.1007/s00221-009-1888-0

Download citation

Keywords

  • Synaesthesia
  • Colour
  • Touch
  • Sensory perception
  • Multisensory processing
  • Cross-modal plasticity